Mathematical reasoning competency and digital tools

Frontpage showing the title, author and affiliation on a light orange background with three diagonal lines with a circle on each.
Bidragsydere

Rikke Maagaard Gregersen, Aarhus Universitet, https://orcid.org/0000-0001-7641-8428

Nøgleord

Competency, digital tools, Mathematical reasoning, GeoGebra

Synopsis

I de seneste årtier er to fokusområder løbende blevet diskuteret inden for forskningen i matematikdidaktik. Det første fokusområde italesætter at mestre og lære matematik som besiddelse og udvikling af matematisk kompetence i stedet for viden og læring af matematiske fakta og færdigheder (Niss, 2016). Det andet område udforsker brugen af digitale teknologier i undervisning og læring af matematik (Artigue & Trouche, 2021). Den danske KOM-rapport skitserer otte matematiske kompetencer, der beskriver aktiviteter relateret til at udøve og håndtere matematik (Niss & Højgaard, 2019). Blandt de otte kompetencer er matematisk ræsonnementskompetence, som er omdrejningspunkt for dette studie. Ræsonnementskompetence indebærer at analysere eller producere argumenter for at begrunde matematiske påstande (Niss & Højgaard, 2019). Kompetencerne, sammen med brugen af digitale værktøjer, er en del af de danske matematiklæreplaner på både grundskole- og gymnasieniveau (Danmarks Evalueringsinstitut [EVA], 2009).
Moderne digitale matematikværktøjer, såsom dynamiske geometri programmer og computer algebra systemer (CAS), integrerer i stigende grad funktionalitet fra hinanden (Freiman, 2014; Sutherland & Rojano, 2014), hvilket giver nye muligheder men også øger programmernes kompleksitet. Dette studie, rapporteret i denne afhandling, har både praktiske og teoretiske formål. Praktisk undersøges, hvordan integrationen af geometri og algebra i digitale matematikværktøjer kan støtte elevers ræsonnementsprocesser i udskolingens matematikundervisning. Studiet lægger vægt på at gøre det muligt for eleverne at udøve deres matematiske ræsonnementskompetence snarere end som sådan at udvikle elevernes kompetence. Teoretisk søger studiet at fremme bæredygtig teoretisk udvikling ved at forbinde KOM med international matematikdidaktiskforskning. Dette opnås ved at anvende et netværksperspektiv (Prediger, Bikner-Ahsbahs et al., 2008) på teoriudvikling.
Projektets metodiske udgangspunkt er designbaseret forskning (Bakker, 2018; Cobb et al., 2003; Gravemeijer & Prediger, 2019; McKenney & Reeves, 2014). Det har guidet indsamling og analyse af data samt design af opgaver, der fordrer elevers udøvelse af matematiske ræsonnementskompetence i brugen af digitale teknologier med fokus på variable som et generaliseret tal. I den henseende er der udviklet og designet en ”microworld” (Hoyles, 1993) med variable punkter med tilhørende opgavesekvenser. Den er udviklet med henblik på at lade eleverne udøve matematiske ræsonnementskompetencer gennem deres undersøgelse af grundlæggende algebraiske udtryk og strukturelle implikationer i de variable punkters dynamiske egenskaber.
Udover KOM anvender projektet andre teoretiske perspektiver, såsom den instrumentelle tilgang til matematikundervisning (IAME) (Guin & Trouche, 1998) og dens opfattelse af kognitive skemaer (Vergnaud, 1998b) i relation til skema-teknik-dualiteten (Drijvers et al., 2013), samt Toulmins (2003) argumentationsmodel. Disse perspektiver bruges til at analysere, beskrive og forklare empiriske data, særligt i forhold til elevernes brug af digitale værktøjer og deres matematiske ræsonnementskompetence.
Afhandlingen består af seks forskningsartikler og denne tilhørende rapport, der beskriver den teoretiske baggrund, metodologi samt bidrager med yderligere analyser og resultater. Paper 1 er et litteraturstudie, der identificerer potentielle værktøjer i GeoGebra, et dynamisk geometri- og algebraprogram, til elevers ræsonnementer af variablen som et generaliseret tal. Paper 1 har informeret studiets efterfølgende designprocesser og produkter. Papers 2 til 5 analyserer empiriske data fra elever, der arbejder med forskellige opgaver, og udviklingen af et analytisk værktøj til instrumented justification. Artikel 2 introducerer den indledende teoretiske udvikling i at forbinde KOM og IAME, som genfortolkes gennem Toulmins model, hvilket fører til udviklingen af et analytisk værktøj. Artikel 3 forfiner dette værktøj, instrumented justification, og beskriver elevers ræsonnementsprocesser ved brug af digitale værktøjer. Artikel 4 fokuserer på elevers mål i brugen af digitale værktøjer i deres undersøgelser og løsning af en opgave. Opgaven videreudvikles på baggrund heraf, og opgavens potentiale og udfordringer for udøvelse af ræsonnementskompetence undersøges. Artikel 5 fokuserer på kognitive skemaer i det analytiske værktøj i analyser af Vergnauds (1998) skema-bestanddele og uddyber, hvordan elevers konceptuelle viden integreres i deres instrumenterede ræsonnementsprocesser. Artikel 6 behandler begrebet forgrunds- og baggrundsteori i et netværksperspektiv på teoriudvikling.
Afhandlingen bidrager med tre designprincipper for opgavedesign, der understøtter elevers udøvelse af ræsonnementskompetence, en ”microworld” til at udforske og begrunde variable punkters dynamiske bevægelse og tilhørende opgaver. Den uddyber også ræsonnementskompetence i elevers instrumenterede ræsonnementsprocesser og skema-teknik-dualiteten og giver forslag til at understøtte disse processer i klasseværelset gennem opgavedesigns. Derudover identificerer den en hybridopfattelse mellem kontinuerlige og diskrete forståelser af variable i forudsigelsen af variable punkters bevægelsesmønstre i dynamiske geometri- og algebraprogrammer og foreslår teoretiske forbindelser mellem KOM og IAME som potentialer for yderligere teoretisk udvikling.

Referencer

Gregersen, R. M. (2022). How about that algebra view in geogebra? A review on how task design may support algebraic reasoning in lower secondary school. In U. T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th International Conference on Technology in Mathematics Teaching (ICTMT 15) (pp. 55‒62). Danish School of Education. https://doi.org/10.7146/aul.452

Gregersen, R. M., & Baccaglini-Frank, A. (2020). Developing an analytical tool of the processes of justificational mediation. In A. Donevska-Todorova, E. Faggiano, J. Trgalova, Z. Lavicza, R. Weinhandl, A. Clark-Wilson, & H.-G. Weigand (Eds.), Proceedings of the Tenth ERME Topic Conference (ETC 10) on Mathematics Education in the Digital Age (MEDA), 16-18 September 2020 in Linz, Austria (pp. 451‒458).

https://hal.archives-ouvertes.fr/hal-02932218

Gregersen, R. M., & Baccaglini-Frank, A. (2022). Lower secondary students' reasoning competency in a digital environment: the case of instrumented justification. In U. T. Jankvist & E. Geraniou (Eds.), Mathematical Competencies in the Digital Era (pp. 119‒138). Springer, Cham. https://doi.org/10.1007/978-3-031-10141-0_2

Gregersen, R. M. (In review). Lower secondary students' exercise of reasoning competency: Potentials and challenges of GeoGebra’s algebra view. International Journal of Mathematical Education in Science and Technology

Gregersen, R. M. (2024). Analysing Instrumented Justification: Unveiling Student’s Tool Use and Conceptual Understanding in the Prediction and Justification of Dynamic Behaviours. Digital Experiences in Mathematics Education. https://doi.org/10.1007/s40751-024-00134-z

Bach, C. C., Pedersen, M. K., Gregersen, R. M., & Jankvist, U. T. (2021). On the notion of ”background and foreground” in networking of theories. In Y. Liljekvist, L. B. Boistrup, J. Häggström, L. Mattsson, O. Olande, & H. Palmér (Eds.), Sustainable mathematics education in a digitalized world: Proceedings of The twelfth research seminar of the Swedish Society for Research in Mathematics Education (MADIF 12) Växjö, January 14–15, 2020 (Vol. 15, pp. 163–172). Skrifter från Svensk Förening för Matematik Didaktisk Forskning. http://matematikdidaktik.org/index.php/madifs-skriftserie/

Artigue, M. (2002). Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work. International Journal of Computers for Mathematical Learning, 7(3), 245‒274. https://doi.org/10.1023/A:1022103903080

Artigue, M. (2010). The Future of Teaching and Learning Mathematics with Digital Technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics Education and Technology-Rethinking the Terrain: The 17th ICMI Study (pp. 463–475). Springer US. https://doi.org/10.1007/978-1-4419-0146-0_23

Artigue, M. (2023). Facing the challenge of theoretical diversity: The digital case. Hiroshima journal of mathematics education, 16. https://www.jasme.jp/hjme/

Artigue, M., & Trouche, L. (2021). Revisiting the French Didactic Tradition through Technological Lenses. Mathematics, 9(6), Article 629. https://doi.org/10.3390/math9060629

Baccaglini-Frank, A. (2019). Dragging, instrumented abduction and evidence, in processes of conjecture generation in a dynamic geometry environment. ZDM, 51(5), 779–791. https://doi.org/10.1007/s11858-019-01046-8

Bach, C. C. (2022). Mathematical communication competency in settings involving a dynamic geometry environment - hope or hype? [PhD dissertation, Aarhus University].

Bach, C. C. (2023). Adapting Profiles for CAS to Students’ Use of DGE: Through a Transition Perspective. Digital Experiences in Mathematics Education, 9(2), 343–371. https://doi.org/10.1007/s40751-022-00123-0

Bach, C. C., Pedersen, M. K., Gregersen, R. M., & Jankvist, U. T. (2021). On the notion of ”background and foreground” in networking of theories. In Y. Liljekvist, L. B. Boistrup, J. Häggström, L. Mattsson, O. Olande, & H. Palmér (Eds.), Sustainable mathematics education in a digitalized world: Proceedings of The twelfth research seminar of the Swedish Society for Research in Mathematics Education (MADIF 12) Växjö, January 14–15, 2020 (Vol. 15, pp. 163–172). Skrifter från Svensk Förening för Matematik Didaktisk Forskning http://matematikdidaktik.org/index.php/madifs-skriftserie/

Bakker, A. (2016). Book Review: Networking theories as an example of boundary crossing. Angelika Bikner-Ahsbahs and Susanne Prediger (Eds.) (2014) Networking of theories as a research practice in mathematics education. Educational Studies in Mathematics, 93(2), 265‒273. https://doi.org/10.1007/s10649-016-9715-6

Bakker, A. (2018). Design research in education: a practical guide for early career researchers. Routledge.

Bakker, A., & van Eerde, D. (2015). An Introduction to Design-Based Research with an Example From Statistics Education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics Education: Examples of Methodology and Methods (pp. 429‒466). Springer Netherlands. https://doi.org/10.1007/978-94-017-9181-6_16

Barab, S., & Squire, K. (2004). Design-Based Research: Putting a Stake in the Ground. Journal of the Learning Sciences, 13(1), 1‒14. https://doi.org/10.1207/s15327809jls1301_1

Bartolini, M. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini-Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education (2 ed., pp. 746–783). Lawrence Erlbaum.

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging Primary Programming and Mathematics: Some Findings of Design Research in England. Digital Experiences in Mathematics Education, 3(2), 115‒138. https://doi.org/10.1007/s40751-017-0028-x

Berthelsen, U. D. (2017). Om det 21. århundredes kompetencer – fra arbejdsmarkedspolitik til allemandseje. [21st centrury skills. About the 21st century’s competences – from labour market policy to public property]. https://www.videnomlaesning.dk/media/2080/21st-century-skills-ulf-dalvad_berthelsen.pdf

Bieda, K. N., & Staples, M. (2020). Justification as an Equity Practice. Mathematics Teacher: Learning and Teaching PK-12 MTLT, 113(2), 102‒108. https://doi.org/10.5951/MTLT.2019.0148

Bikner-Ahsbahs, A. (2016). Networking of Theories in the Tradition of TME. In A. Bikner-Ahsbahs, A. Vohns, O. Schmitt, R. Bruder, & W. Dörfler (Eds.), Theories in and of Mathematics Education: Theory Strands in German Speaking Countries (pp. 33‒42). Springer International Publishing. https://doi.org/10.1007/978-3-319-42589-4_5

Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of Theories as a Research Practice in Mathematics Education. Springer International Publishing. https://doi.org/10.1007/978-3-319-05389-9

Bikner-Ahsbahs, A., Prediger, S., Artigue, M., Arzarello, F., Bosch, M., Dreyfus, T., Gascón, J., Halverscheid, S., Haspekian, M., Kidron, I., Corblin-Lenfant, A., Meyer, A., Sabena, C., & Schäfer, I. (2014). Starting Points for Dealing with the Diversity of Theories. In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of Theories as a Research Practice in Mathematics Education (pp. 3‒12). Springer International Publishing. https://doi.org/10.1007/978-3-319-05389-9_1

Bikner-Ahsbahs, A., Vallejo-Vargas, E., Rohde, S., Janßen, T., Reid, D., Alexandrovsky, D., Reinschluessel, A., Döring, T., & Malaka, R. (2023). The Role of Feedback When Learning with a Digital Artifact: A Theory Networking Case on Multimodal Algebra Learning. Hiroshima journal of mathematics education, 16. https://doi.org/10.24529/hjme.1607

Binti Misrom, N. S., Muhammad, A. S., Abdullah, A. H., Osman, S., Hamzah, M. H., & Fauzan, A. (2020). Enhancing Students’ Higher-Order Thinking Skills (HOTS) Through an Inductive Reasoning Strategy Using Geogebra. International Journal of Emerging Technologies in Learning (iJET), 15(3), 156‒179. https://doi.org/10.3991/ijet.v15i03.9839

Bloch, I. (2003). Teaching functions in a graphic milieu: What forms of knowledge enable students to conjecture and prove? Educational Studies in Mathematics, 52(1), 3‒28. https://doi.org/10.1023/A:1023696731950

Boylan, M., Deack, S., Wolstenholme, C., & Reidy, J. (2018). ScratchMaths evaluation report and executive summary. Education Endowment Foundation. Sheffield Hallam University https://shura.shu.ac.uk/23758/1/ScratchMaths%20evaluation%20report.pdf

Bråting, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. Mathematical Thinking and Learning, 23(2), 170‒185. https://doi.org/10.1080/10986065.2020.1779012

Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer Academic Publishers.

Buchberger, B. (1990). Should Students Learn Integration Rules? SIGSAM Bull., 24(1), 10–17. https://doi.org/10.1145/382276.1095228

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019). Theoretical Framing as Justifying. Journal for Research in Mathematics Education, 50(3), 218‒224. https://doi.org/10.5951/jresematheduc.50.3.0218

Chevallard, Y. (2019). Introducing the anthropological theory of the didactic: An attempt at a principled approach. Hiroshima journal of mathematics education, 12(1), 71‒114.

Churchhouse, R. F., Cornu, B., Howson, A. G., Kahane, J. P., van Lint, J. H., Pluvinage, F., Ralston, A., & Yamaguti, M. (Eds.). (1986). The Influence of Computers and Informatics on Mathematics and its Teaching: Proceedings From a Symposium Held in Strasbourg, France in March 1985 and Sponsored by the International Commission on Mathematical Instruction. Cambridge University Press. https://doi.org/10.1017/CBO9781139013482

Cobb, P. (2007). Putting philosophy to work: Coping with multiple theoretical perspectives. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 3‒38). Information Age.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design Experiments in Educational Research. Educational Researcher, 32(1), 9‒13. https://doi.org/10.3102/0013189X032001009

Cobb, P., Zhao, Q., & Dean, C. (2009). Conducting Design Experiments to Support Teachers' Learning: A Reflection From the Field. Journal of the Learning Sciences, 18(2), 165‒199. https://doi.org/10.1080/10508400902797933

Cohen, M. R. (1933). Book Review:The Collected Papers of Charles Sanders Peirce: Vol. I:Principles of Philosophy; Charles Sanders Peirce, Charles Hartshorne, Paul Weiss; Vol. II:Elements of Logic. Charles Sanders Peirce, Charles Hartshorne, Paul Weiss. Ethics, 43(2), 220. https://doi.org/10.1086/208072

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design Research: Theoretical and Methodological Issues. Journal of the Learning Sciences, 13(1), 15‒42. https://doi.org/10.1207/s15327809jls1301_2

Confrey, J., & Lachance, A. (2000). Transformative teaching experiments through conjecture-driven research design. In A. Kelly, A. E. Kelly, & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 231‒265). Lawrence Erlbaum. https://doi.org/10.4324/9781410602725

Danmarks Evalueringsinstitut [EVA] (2009). Undervisningsmidler i folkeskolen [Teaching materials in schools].

Defouad, B. (2000). Etude de genèses instrumentales liées à l'utilisation de calculatrices symboliques en classe de première S [PhD dissertation, Université Denis Diderot Paris VII]. https://theses.hal.science/tel-01253860

diSessa, A. A., & Cobb, P. (2004). Ontological Innovation and the Role of Theory in Design Experiments. Journal of the Learning Sciences, 13(1), 77‒103. https://doi.org/10.1207/s15327809jls1301_4

Douady, R. (1991). Tool, Object, Setting, Window: Elements for Analysing and Constructing Didactical Situations in Mathematics. In A. J. Bishop, S. Mellin-Olsen, & J. Van Dormolen (Eds.), Mathematical Knowledge: Its Growth Through Teaching (pp. 107‒130). Springer Netherlands. https://doi.org/10.1007/978-94-017-2195-0_6

Dreyfus, T. (1999). Why Johnny can't prove. Educational Studies in Mathematics, 38(1-3), 85–09.

Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of Technology in Lower Secondary Mathematics Education. In P. Drijvers, L. Ball, B. Barzel, M. K. Heid, Y. Cao, & M. Maschietto (Eds.), Uses of Technology in Lower Secondary Mathematics Education: A Concise Topical Survey (pp. 1‒34). Springer International Publishing. https://doi.org/10.1007/978-3-319-33666-4_1

Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013). One episode, two lenses. Educational Studies in Mathematics, 82(1), 23‒49. https://doi.org/10.1007/s10649-012-9416-8

Drijvers, P., Kieran, C., Mariotti, M.-A., Ainley, J., Andresen, M., Chan, Y. C., Dana-Picard, T., Gueudet, G., Kidron, I., Leung, A., & Meagher, M. (2009). Integrating Technology into Mathematics Education: Theoretical Perspectives. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics Education and Technology-Rethinking the Terrain: The 17th ICMI Study (pp. 89‒132). Springer US. https://doi.org/10.1007/978-1-4419-0146-0_7

Dubinsky, E. (1991). Reflective Abstraction in Advanced Mathematical Thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95‒126). Springer Netherlands. https://doi.org/10.1007/0-306-47203-1_7

Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof. In P. Boero (Ed.), Theorems in School. From History, Epistemology and Cognition to Classroom Practice (pp. 135‒161). Brill. https://doi.org/10.1163/9789087901691_009

Eco, U. (1986). Semiotics and the philosophy of language. Indiana University Press.

Edwards, L. D. (1998). Embodying Mathematics and Science: Microworlds as representations. The Journal of Mathematical Behavior, 127‒154.

Eisenhart, M. A. (1991). Conceptual frameworks for research circa 1991: Ideas from a cultural anthropologist; implications for mathematics education researchers. In R. G. Underhill (Ed.), Proceedings of the thirteenth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 202‒219). Division of Curriculum & Instruction.

Freiman, V. (2014). Types of Technology in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 623‒629). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_158

Granberg, C., & Olsson, J. (2015). ICT-supported problem-solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software. Journal of Mathematical Behavior, 37, 48‒62. https://doi.org/10.1016/j.jmathb.2014.11.001

Gravemeijer, K. (1994). Educational Development and Developmental Research in Mathematics Education. Journal for Research in Mathematics Education, 25(5), 443‒471. https://doi.org/10.2307/749485

Gravemeijer, K., & Prediger, S. (2019). Topic-Specific Design Research: An Introduction. In G. Kaiser & N. Presmeg (Eds.), Compendium for Early Career Researchers in Mathematics Education (pp. 33‒57). Springer International Publishing. https://doi.org/10.1007/978-3-030-15636-7_2

Gregersen, R. M. (2020, 12th‒19th July). Digital tools and mediation in informal justification. Presented at The 14th International Congress on Mathematical Education, Shanghai.

Gregersen, R. M. (2022). How about that algebra view in geogebra? A review on how task design may support algebraic reasoning in lower secondary school. In U. T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th International Conference on Technology in Mathematics Teaching (ICTMT 15) (pp. 55‒62). Danish School of Education. https://ebooks.au.dk/aul/catalog/book/452

Gregersen, R. M. (In review). Lower secondary students' exercise of reasoning competency: Potentials and challenges of GeoGebra’s algebra view. International Journal of Mathematical Education in Science and Technology

Gregersen, R. M., & Baccaglini-Frank, A. (2020). Developing an analytical tool of the processes of justificational mediation. In A. Donevska-Todorova, E. Faggiano, J. Trgalova, Z. Lavicza, R. Weinhandl, A. Clark-Wilson, & H.-G. Weigand (Eds.), Proceedings of the Tenth ERME Topic Conference (ETC 10) on Mathematics Education in the Digital Age (MEDA), 16-18 September 2020 in Linz, Austria (pp. 451‒458). https://hal.archives-ouvertes.fr/hal-02932218

Gregersen, R. M., & Baccaglini-Frank, A. (2022). Lower secondary students' reasoning competency in a digital environment: the case of instrumented justification. In U. T. Jankvist & E. Geraniou (Eds.), Mathematical Competencies in the Digital Era (pp. 119‒138). Springer, Cham. https://doi.org/10.1007/978-3-031-10141-0_2

Grønbæk, N., Rasmussen, A.-B., Skott, C. K., Bang-Jensen, J., Fajstrup, L., Schou, M. H., Christensen, M., Lumholt, M., Kjærup, R., Jørgensen, S., Hansen, S. L., & Markvorsen, S. (2017). Matematikkommissionen – afrapportering [The Commission of Mathematics – reporting].

Guin, D., & Trouche, L. (1998). The Complex Process of Converting Tools into Mathematical Instruments: The Case of Calculators. International Journal of Computers for Mathematical Learning, 3(3), 195–227. https://doi.org/10.1023/A:1009892720043

Gyöngyösi, E., Solovej, J., & Winsløw, C. (2011). Using CAS based work to ease the transition from calculus to real analysis. In Marta Pytlak, Tim Rowland, & E. Swoboda (Eds.), Proceedings of the seventh congress of the European society for research in mathematics education (CERME 7) (pp. 2002‒2011). University of Rzeszów and ERME.

Hanna, G. (2000). Proof, Explanation and Exploration: An Overview. Educational Studies in Mathematics, 44(1-2), 5‒23. https://doi.org/https://doi.org/10.1023/A:1012737223465

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. Lester (Ed.), Second Handbook of Research on Mathematics Education (pp. 805–842). Information Age Pub Inc.

Harel, G., & Weber, K. (2018). Deductive Reasoning in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 1‒8). Springer International Publishing. https://doi.org/10.1007/978-3-319-77487-9_43-6

Haspekian, M., Artigue, M., & Rocha, K. (2023). Networking of Theories: An Approach to the Development and Use of Digital Resources in Mathematics Education. In B. Pepin, G. Gueudet, & J. Choppin (Eds.), Handbook of Digital Resources in Mathematics Education (pp. 1‒29). Springer International Publishing. https://doi.org/10.1007/978-3-030-95060-6_4-1

Healy, L., & Kynigos, C. (2010). Charting the microworld territory over time: design and construction in mathematics education. ZDM, 42(1), 63‒76. https://doi.org/10.1007/s11858-009-0193-5

Hohenwarter, M., & Jones, K. (2007). Ways of linking geometry and algebra: the case of GeoGebra. BSRLM Geometry Working Group. In D. Küchemann (Ed.), Day Conference British Society for Research into Learning Mathematics (Vol. 27, pp. 126‒131). British Society for Research into Learning Mathematics. https://bsrlm.org.uk/publications/proceedings-of-day-conference/

Højsted, I. H. (2021). Toward Marvels in Dynamic Geometry Teaching and Learning: Developing guidelines for the design of didactic sequences that exploit potentials of dynamic geometry to foster students’ development of mathematical reasoning competency. [PhD dissertation, Aarhus University].

Hoyles, C. (1993). Microworlds/Schoolworlds: The Transformation of an Innovation. In C. Keitel & K. Ruthven (Eds.), Learning from Computers: Mathematics Education and Technology (pp. 1‒17). Springer Berlin Heidelberg.

Hoyles, C. (2018). Transforming the mathematical practices of learners and teachers through digital technology. Research in Mathematics Education, 20(3), 209‒228. https://doi.org/10.1080/14794802.2018.1484799

Jackiw, N. (2010). Linking Algebra and geometry: The Dynamic Geometry Perpsective. In Z. Usiskin, K. Andersen, & N. Zotto (Eds.), Future Curricular Trends in School Algebra and Geometry: Proceedings of a Conference (pp. 217‒230). Information Age Publishing, Incorporated.

Jankvist, U. T., & Geraniou, E. (Eds.). (2022). Mathematical Competencies in the Digital Era (Vol. 20). Springer International Publishing. https://doi.org/10.1007/978-3-031-10141-0_1

Jankvist, U. T., & Misfeldt, M. (2015). CAS-induced difficulties in learning mathematics? For the Learning of Mathematics, 34, 15–20.

Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1‒16. https://doi.org/10.1007/s10649-017-9761-8

Kaput, J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A Project of the National Council of Teachers of Mathematics (pp. 515‒556). National Council of Teachers of Mathematics.

Kaput, J., & Schorr, R. (2007). Changing representational infrastructures changes most everything: The case of SimCalc, Algebra and calculus. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the learning and teaching of mathematics: Vol. 2 cases and perspectives (pp. 211‒253). Information Age Publishing.

Kasmer, L., & Kim, O.-K. (2011). Using Prediction to Promote Mathematical Understanding and Reasoning. School Science and Mathematics, 111(1), 20‒33. https://doi.org/10.1111/j.1949-8594.2010.00056.x

Kidron, I., Bosch, M., Monaghan, J., & Palmér, H. (2018). Theoretical perspectives and approaches in mathematics education research. In M. A. T. Dreyfus, D. Potari, S. Prediger & K. Ruthven (Ed.), Developing Research in Mathematics Education, Twenty Years of Communication, Cooperation and Collaboration in Europe (pp. 254–268). Routledge. https://doi.org/10.4324/9781315113562-19

Kilhamn, C., Bråting, K., Helenius, O., & Mason, J. (2022). Variables in early algebra : exploring didactic potentials in programming activities. ZDM - the International Journal on Mathematics Education, 54(6), 1273‒1288. https://doi.org/10.1007/s11858-022-01384-0

Kilpatrick, J. (2014). Competency Frameworks in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 85‒87). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_27

Kim, O.-K., & Kasmer, L. (2007). Using "Prediction" to Promote Mathematical Reasoning. Mathematics Teaching in the Middle School, 12(6), 294‒299. https://doi.org/10.5951/MTMS.12.6.0294

Knuth, E. J., Zaslavsky, O., & Ellis, A. (2019). The role and use of examples in learning to prove. The Journal of Mathematical Behavior, 53, 256‒262. https://doi.org/10.1016/j.jmathb.2017.06.002

Kynigos, C., Psycharis, G., & Moustaki, F. (2010). Meanings generated while using algebraic-like formalism to construct and control animated models. International Journal for Technology in Mathematics Education, 17, 17‒32.

Laborde, C., & Laborde, J.-M. (1995). What About a Learning Environment Where Euclidean Concepts are Manipulated with a Mouse? In A. A. diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and Exploratory Learning (Vol. 146, pp. 241‒262). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-57799-4_13

Lagrange, J.-B., & Psycharis, G. (2011). Combining theoretical frameworks to investigate the potential of computer environments offering integrated geometrical and algebraic representations. In M. Joubert, A. Clark-Wilson, & M. McCabe (Eds.), The 10th International Conference on Technology in Mathematics Teaching.

Lerman, S. (2006). Theories of mathematics education: Is plurality a problem? Zentralblatt für Didaktik der Mathematik, 38(1), 8‒13. https://doi.org/10.1007/BF02655902

Lesh, R., Sriraman, B., & English, L. (2014). Theories of Learning Mathematics. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 615‒623). Springer Science.

Lesseig, K., & Lepak, J. (2022). Justification in the Context of Middle Grades: A Process of Verification and Sense-Making. In K. N. Bieda, A. Conner, K. W. Kosko, & M. Staples (Eds.), Conceptions and Consequences of Mathematical Argumentation, Justification, and Proof (pp. 95‒107). Springer International Publishing. https://doi.org/10.1007/978-3-030-80008-6_9

Lester, F. K. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. ZDM, 37(6), 457‒467. https://doi.org/10.1007/BF02655854

Leung, A. (2008). Dragging in a Dynamic Geometry Environment through the Lens of Variation. International Journal of Computers for Mathematical Learning, 13(2), 135‒157. https://doi.org/10.1007/s10758-008-9130-x

Leung, A. (2014). Principles of Acquiring Invariant in Mathematics Task Design: A Dynamic Geometry Example. In C. N. P. Liljedahl, S. Oesterle, & D. Allan (Ed.), Proceedings of the 38th Conference the International Group for the Psychology of Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. Vol. 4, pp. 89–96).

Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernment of Invariants in Dynamic Geometry Environments. Educational Studies in Mathematics, 84(3), 439‒460. https://doi.org/http://dx.doi.org/10.1007/s10649-013-9492-4

Lim, K. H., Buendía, G., Kim, O.-K., Cordero, F., & Kasmer, L. (2010). The role of prediction in the teaching and learning of mathematics. International Journal of Mathematical Education in Science and Technology, 41(5), 595‒608. https://doi.org/10.1080/00207391003605239

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255‒276. https://doi.org/10.1007/s10649-007-9104-2

Mackrell, K. (2011). Integrating number, algebra, and geometry with interactive geometry software. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (CERME 7) (pp. 691‒700). University of Rzeszów and ERME

Manouchehri, A., & Sriraman, B. (2018). Mathematical Cognition: In Secondary Years [13–18] Part 2. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 1‒10). Springer International Publishing. https://doi.org/10.1007/978-3-319-77487-9_100039-1

Maracci, M. (2008). Combining different theoretical perspectives for analyzing students’ difficulties in vector spaces theory. ZDM, 40(2), 265‒276. https://doi.org/10.1007/s11858-008-0078-z

Mariotti, M. A. (2012). Proof and proving in the classroom: Dynamic Geometry Systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163‒185. https://doi.org/10.1080/14794802.2012.694282

Mason, J., & Waywood, A. (1996). The role of theory in mathematics education and research. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 1055‒1089). Kluwer.

Mavrikis, M., Noss, R., Hoyles, C., & Geraniou, E. (2013). Sowing the seeds of algebraic generalization: designing epistemic affordances for an intelligent microworld. Journal of Computer Assisted Learning, 29(1), 68‒84. https://doi.org/https://doi.org/10.1111/j.1365-2729.2011.00469.x

McClelland, D. C. (1973). Testing for competence rather than for "intelligence". American Psychologist, 28(1), 1‒14. https://doi.org/10.1037/h0034092

McKenney, S., & Reeves, T. C. (2014). Educational Design Research. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of Research on Educational Communications and Technology (pp. 131‒140). Springer New York. https://doi.org/10.1007/978-1-4614-3185-5_11

McKenney, S., & Reeves, T. C. (2018). Conducting Educational Design Research (2 ed.). Routledge.

Ministry of Children and Education. (2018). Overblik over gymnasiale uddannelser [overview of upper secondary education]. https://www.uvm.dk/gymnasiale-uddannelser/uddannelser/overblik-over-gymnasiale-uddannelser

Ministry of Children and Education. (2019). Matematik Fælles Mål [Common objectives for mathematics]. EMU. https://www.emu.dk/grundskole/matematik/faelles-mal

Ministry of Children and Education (2021). Matematik A/B/C, stx - Vejledning [Mathematics A/B/C, stx - instructions]. Danish Ministry of Children and Education. https://www.uvm.dk/gymnasiale-uddannelser/fag-og-laereplaner/laereplaner-2017/stx-laereplaner-2017

Misfeldt, M., & Jankvist, U. T. (2018). Instrumental Genesis and Proof: Understanding the Use of Computer Algebra Systems in Proofs in Textbook. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale (Eds.), Uses of Technology in Primary and Secondary Mathematics Education: Tools, Topics and Trends (pp. 375‒385). Springer International Publishing. https://doi.org/10.1007/978-3-319-76575-4_22

Misfeldt, M., & Jankvist, U. T. (2019). CAS Assisted Proofs in Upper Secondary School Mathematics Textbooks. REDIMAT - Journal of Research in Mathematics Education, 8(3), 232­‒266.

Monaghan, J., & Trouche, L. (2016). Introduction to the Book. In J. Monaghan, L. Trouche, & J. M. Borwein (Eds.), Tools and Mathematics (pp. 3‒12). Springer International Publishing. https://doi.org/10.1007/978-3-319-02396-0_1

Monaghan, J., Trouche, L., & Borwein, J. M. (2016). Tools and Mathematics: Instruments for learning. Springer International Publishing. https://books.google.dk/books?id=Dh_ynQEACAAJ

Moreno-Armella, L., Hegedus, S. J., & Kaput, J. J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68(2), 99‒111. https://doi.org/https://doi.org/10.1007/s10649-008-9116-6

Mullis, I. V. S., Martin, M. O., & Loveless, T. (2016). 20 Years of TIMMS. International Trends in Mathematics and Science Achievement, Curriculum and Instruction. . http://timssandpirls.bc.edu/timss2015/international-results/timss2015/wp-content/uploads/2016/T15-20-years-of-TIMSS.pdf

Niss, M. (2007). Reflections on the State of and Trends in Research on Mathematics Teaching and Learning: From Here to Utopia. In J. F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (Vol. 2, pp. 1293‒1312). Information Age Publishing.

Niss, M. (2016). Mathematics Standards and Curricula Under the Influence of Digital Affordances: Different Notions, Meanings and Roles in Different Parts of the World. In M. Bates & Z. Usiskin (Eds.), Digital Curricula in School Mathematics (pp. 239‒250). Information Age Publishing. Research in Mathematics Education.

Niss, M., & Højgaard, T. (2011). Competencies and Mathematical Learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. IMFUFA, Roskilde University. http://thiele.ruc.dk/imfufatekster/

Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 9‒28. https://doi.org/10.1007/s10649-019-09903-9

Niss, M., & Jankvist, U. T. (2022). On the mathematical competencies framework and its potentials for combining and networking with other theories and theoretical constructs. In U. T. Jankvist & E. Geraniou (Eds.), Mathematical Competencies in the Digital Era Springer (pp. 15‒38). Springer, Cham. https://doi.org/10.1007/978-3-031-10141-0_2

Niss, M., & Jensen, T. H. (2002). Kompetencer og matematiklæring: Ideer og inspiration til udvikling af matematikundervisning i Danmark. Undervisningsministeriet. https://static.uvm.dk/Publikationer/2002/kom/

Noss, R., Hoyles, C., Mavrikis, M., Geraniou, E., Gutierrez-Santos, S., & Pearce, D. (2009). Broadening the sense of ‘dynamic’: a microworld to support students’ mathematical generalisation. ZDM, 41(4), 493‒503.

Noss, R., Poulovassilis, A., Geraniou, E., Gutierrez-Santos, S., Hoyles, C., Kahn, K., Magoulas, G. D., & Mavrikis, M. (2012). The design of a system to support exploratory learning of algebraic generalisation. Computers & Education, 59(1), 63‒81. https://doi.org/https://doi.org/10.1016/j.compedu.2011.09.021

Olive, J., Makar, K., Hoyos, V., Kor, L. K., Kosheleva, O., & Sträßer, R. (2010). Mathematical Knowledge and Practices Resulting from Access to Digital Technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics Education and Technology-Rethinking the Terrain: The 17th ICMI Study (pp. 133‒177). Springer US. https://doi.org/10.1007/978-1-4419-0146-0_8

Olivero, F., & Robutti, O. (2007). Measuring in Dynamic Geometry Environments as a Tool for Conjecturing and Proving. International Journal of Computers for Mathematical Learning, 12(2), 135‒156. https://doi.org/http://dx.doi.org/10.1007/s10758-007-9115-1

Olsson, J. (2017). GeoGebra, Enhancing Creative Mathematical Reasoning [PhD dissertation, Umeå university]. http://umu.diva-portal.org/smash/record.jsf?pid=diva2%3A1085687&dswid=-9116

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic books.

Partnership for 21st Century Skills (2002). Learning for the 21st Century: A Report and MILE Guide for 21st Century Skills.

Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving processes through a cognitive lens: the case of triangular numbers. ZDM, 43(2), 257‒267. https://doi.org/10.1007/s11858-011-0311-z

Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76(3), 281‒303. https://doi.org/10.1007/s10649-010-9275-0

Pedersen, M. K. (2024). Mathematical Thinking Competency and Digital Tools: Potentials and Pitfalls for students’ work with differential calculus in upper secondary education., Aarhus University].

Pedersen, M. K., Bach, C. C., Gregersen, R. M., Højsted, I. H., & Jankvist, U. T. (2021). Mathematical Representation Competency in Relation to Use of Digital Technology and Task Design—A Literature Review. Mathematics, 9(4), 444. https://www.mdpi.com/2227-7390/9/4/444

Pittalis, M., & Drijvers, P. (2023). Embodied instrumentation in a dynamic geometry environment: eleven-year-old students’ dragging schemes. Educational Studies in Mathematics, 113(2), 181‒205. https://doi.org/10.1007/s10649-023-10222-3

Prediger, S. (2019). Theorizing in Design Research: Methodological reflections on developing and connecting theory elements for language-responsive mathematics classrooms. Avances de Investigación en Educación Matemática, 15 (Special Issues on task design), 5‒27. https://doi.org/https://doi.org/10.35763/aiem.v0i15.265

Prediger, S., Arzarello, F., Bosch, M., & Lenfant, A. (2008). Comparing, combining, coordinating-networking strategies for connecting theoretical approaches Editorial for ZDM-issue 39 (2008) 2. ZDM, 40(2), 163‒164. https://doi.org/10.1007/s11858-008-0093-0

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: first steps towards a conceptual framework. ZDM, 40(2), 165‒178. https://doi.org/10.1007/s11858-008-0086-z

Rabardel, P. (1995/2002). People and technology: a cognitive approach to contemporary instruments. (H. Wood, Trans.). (Original work published 1995).

Rabardel, P. (2001). Instrument Mediated Activity in Situations. In A. Blandford, J. Vanderdonckt, & P. Gray (Eds.), People and Computers XV—Interaction without Frontiers (pp. 17‒30). Springer London.

Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: a developmental perspective. Interacting with Computers, 15(5), 665‒691. https://doi.org/10.1016/s0953-5438(03)00058-4

Radford, L. (2008). Connecting theories in mathematics education: challenges and possibilities. ZDM, 40(2), 317‒327. https://doi.org/10.1007/s11858-008-0090-3

Radford, L. (2012, May 31–June 1). On the growth and transformation of mathematics education theories. International Colloquium The Didactics of Mathematics: Approaches and Issues, Université de Paris VII.

Radford, L. (2018). On theories in mathematics education and their conceptual differences. In B. Sirakov, P. d. Souza, & M. Viana (Eds.), Proceedings of the International Congress of Mathematicians (Vol. 4). World Scientific Publishing Co. https://doi.org/10.1142/11060

Rezat, S. (2021). How automated feedback from a digital mathematics textbook affects primary students’ conceptual development: two case studies. ZDM – Mathematics Education, 53(6), 1433‒1445. https://doi.org/10.1007/s11858-021-01263-0

Rhine, S., Harrington, R., & Starr, C. (2019). How students think when doing algebra. Information Age Publishing, Inc.

Roanes-Lozano, E., Roanes-Macías, E., & Villar-Mena, M. (2003). A bridge between dynamic geometry and computer algebra. Mathematical and Computer Modelling, 37(9), 1005‒1028. https://doi.org/https://doi.org/10.1016/S0895-7177(03)00115-8

Roorda, G., Vos, P., Drijvers, P., & Goedhart, M. (2016). Solving Rate of Change Tasks with a Graphing Calculator: a Case Study on Instrumental Genesis. Digital Experiences in Mathematics Education, 2(3), 228‒252. https://doi.org/10.1007/s40751-016-0022-8

Sabena, C., Arzarello, F., Bikner-Ahsbahs, A., & Schäfer, I. (2014). The Epistemological Gap: A Case Study on Networking of APC and IDS. In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of Theories as a Research Practice in Mathematics Education (pp. 179‒200). Springer International Publishing. https://doi.org/10.1007/978-3-319-05389-9_11

Schoenfeld, A. H. (2007). Method. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 69‒107). Information Age.

Segal, R., Stupel, M., & Oxman, V. (2016). Dynamic investigation of loci with surprising outcomes and their mathematical explanations. International Journal of Mathematical Education in Science and Technology, 47(3), 443‒462. https://doi.org/http://dx.doi.org/10.1080/0020739X.2015.1075613

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1‒36. https://doi.org/10.1007/BF00302715

Sfard, A. (2008). Thinking as Communicating: Human Development, the Growth of Discourses, and Mathematizing. Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511499944

Simpson, A. (2015). The anatomy of a mathematical proof: Implications for analyses with Toulmin’s scheme. Educational Studies in Mathematics, 90(1), 1‒17. https://doi.org/10.1007/s10649-015-9616-0

Soldano, C., & Arzarello, F. (2017). Learning with the logic of inquiry: game-activities inside Dynamic Geometry Environments. In T. Dooley & G. Gueudet (Eds.), The Tenth Congress of the European Society for Research in Mathematics Education (CERME10) (pp. 267‒274). Institute of Education, Dublin City University, Ireland, and ERME.

Staples, M. E., Bartlo, J., & Thanheiser, E. (2012). Justification as a teaching and learning practice: Its (potential) multifacted role in middle grades mathematics classrooms. The Journal of Mathematical Behavior, 31(4), 447‒462. https://doi.org/https://doi.org/10.1016/j.jmathb.2012.07.001

Star, S. L., & Griesemer, J. R. (1989). Institutional Ecology, `Translations' and Boundary Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Social Studies of Science, 19(3), 387‒420. https://doi.org/10.1177/030631289019003001

Stylianides, A. J., & Stylianides, G. J. (2022). On the Meanings of Argumentation, Justification, and Proof: General Insights from Analyses of Elementary Classroom Episodes. In K. N. Bieda, A. Conner, K. W. Kosko, & M. Staples (Eds.), Conceptions and Consequences of Mathematical Argumentation, Justification, and Proof (pp. 65‒72). Springer International Publishing. https://doi.org/10.1007/978-3-030-80008-6_6

Stylianides, G. J. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9‒16.

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the Transition from Empirical Arguments to Proof. Journal for Research in Mathematics Education, 40(3), 314‒352. http://www.jstor.org/stable/40539339

Sutherland, R., & Rojano, T. (2014). Technology and Curricula in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 601‒605). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_154

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151‒169. https://doi.org/10.1007/BF00305619

Tanguay, D., Geeraerts, L., Mandico, M. S., & Venant, F. (2013). An Activity Entailing Exactness and Approximation of Angle Measurement in a DGS. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eight Congress of the European Society for Research in Mathematics Education (Cerme 8) (pp. 695‒704). Middle East Technical University and ERME.

Thomas, G. (2011). A Typology for the Case Study in Social Science Following a Review of Definition, Discourse, and Structure. Qualitative Inquiry, 17(6), 511‒521. https://doi.org/10.1177/1077800411409884

Thomsen, M. (2022). Matematikhistoriske originalkilder, ræsonnementskompetence og GeoGebra på mellemtrinnet [PhD dissertation, Aarhus University].

Toulmin, S. E. (2003). The uses of argument: Updated Edition (2 ed.). Cambridge University Press.

Trouche, L. (1996). A propos de l'apprentissage des limites de fonctions dans un "environnement calculatrice" : étude des rapports entre processus d'instrumentation et processus de conceptualisation [PhD dissertation, Université Montpellier 2]. https://theses.hal.science/tel-02374810

Trouche, L. (2003). From artifact to instrument: mathematics teaching mediated by symbolic calculators. Interacting with Computers, 15(6), 783‒800. https://doi.org/10.1016/j.intcom.2003.09.004

Trouche, L. (2004). Managing the Complexity of Human/Machine Interactions in Computerized Learning Environments: Guiding Students’ Command Process through Instrumental Orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281‒307. https://doi.org/10.1007/s10758-004-3468-5

Trouche, L. (2005). An Instrumental Approach to Mathematics Learning in Symbolic Calculator Environments. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The Didactical Challenge of Symbolic Calculators: Turning a Computational Device into a Mathematical Instrument (pp. 137‒162). Springer US. https://doi.org/10.1007/0-387-23435-7_7

Trouche, L. (2020). Instrumentation in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 404‒412). Springer International Publishing.

Trouche, L., Drijvers, P., Gueudet, G., & Sacristán, A. I. (2013). Technology-Driven Developments and Policy Implications for Mathematics Education. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third International Handbook of Mathematics Education (pp. 753‒789). Springer New York. https://doi.org/10.1007/978-1-4614-4684-2_24

Van den Akker, J. (1999). Principles and Methods of Development Research. In J. van den Akker, R. M. Branch, K. Gustafson, N. Nieveen, & T. Plomp (Eds.), Design Approaches and Tools in Education and Training (pp. 1‒14). Springer Netherlands. https://doi.org/10.1007/978-94-011-4255-7_1

Vergnaud, G. (1998a). A comprehensive theory of representation for mathematics education. The Journal of Mathematical Behavior, 17(2), 167‒181. https://doi.org/https://doi.org/10.1016/S0364-0213(99)80057-3

Vergnaud, G. (1998b). Towards A Cognitive Theory of Practice. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics Education as a Research Domain: A Search for Identity: An ICMI Study Book 1. An ICMI Study Book 2 (pp. 227‒240). Springer Netherlands. https://doi.org/10.1007/978-94-011-5470-3_15

Vergnaud, G. (2009). The Theory of Conceptual Fields. Human Development, 52(2), 83‒94. https://www.jstor.org/stable/26764894

Villa-Ochoa, J. A., & Suárez-Téllez, L. (2021). Computer Algebra Systems and Dynamic Geometry for Mathematical Thinking. In M. Danesi (Ed.), Handbook of Cognitive Mathematics (pp. 1‒27). Springer International Publishing. https://doi.org/10.1007/978-3-030-44982-7_36-1

Vollstedt, M., & Rezat, S. (2019). An Introduction to Grounded Theory with a Special Focus on Axial Coding and the Coding Paradigm. In G. Kaiser & N. Presmeg (Eds.), Compendium for Early Career Researchers in Mathematics Education (pp. 81‒100). Springer International Publishing. https://doi.org/10.1007/978-3-030-15636-7_4

Weber, K., Inglis, M., & Mejia-Ramos, J. P. (2014). How Mathematicians Obtain Conviction: Implications for Mathematics Instruction and Research on Epistemic Cognition. Educational Psychologist, 49(1), 36‒58. https://doi.org/10.1080/00461520.2013.865527

White, R., & Gunstone, R. (1992). Probing Understanding. https://doi.org/10.4324/9780203761342

Wood, T. (1999). Creating a Context for Argument in Mathematics Class. Journal for Research in Mathematics Education, 30(2), 171‒191. https://doi.org/10.2307/749609

Wood, T., Williams, G., & McNeal, B. (2006). Children's Mathematical Thinking in Different Classroom Cultures. Journal for Research in Mathematics Education, 37(3), 222‒255. http://www.jstor.org/stable/30035059

Yackel, E., & Cobb, P. (1996). Sociomathematical Norms, Argumentation, and Autonomy in Mathematics. Journal for Research in Mathematics Education, 27(4), 458‒477. https://doi.org/10.2307/749877

Yohannes, A., & Chen, H.-L. (2021). GeoGebra in mathematics education: a systematic review of journal articles published from 2010 to 2020. Interactive Learning Environments, 1‒16. https://doi.org/10.1080/10494820.2021.2016861

Zazkis, R., Liljedahl, P., & Chernoff, E. J. (2008). The role of examples in forming and refuting generalizations. ZDM, 40(1), 131‒141. https://doi.org/10.1007/s11858-007-0065-9

Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169‒1207). Infoage.

Citation/Eksport

Gregersen, R. M. (2025). Mathematical reasoning competency and digital tools. Aarhus Universitet. https://doi.org/10.7146/aul.593