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SUMMARY

In recent decades, among others, two areas of focus have emerged in mathematics education research.
The first emphasizes mastering mathematics as competencies, proficiency, or literacy, as opposed to
merely knowing mathematical facts and skills (Niss, 2016). The second area explores the use of digital

technologies in teaching and learning mathematics (Artigue & Trouche, 2021).

The Danish competency framework, known as the KOM-framework, outlines eight mathematical
competencies that describe activities related to doing and dealing with mathematics (Niss & Hgjgaard,
2019). Among the eight competencies, mathematical reasoning competency, which involves analyzing
or producing arguments to justify mathematical claims, is the focus of this project (Niss & Hgjgaard,
2019). The KOM-framework, along with the use of digital tools, is featured in the Danish mathematics
curricula across primary, lower secondary, and upper secondary education (Danmarks
Evalueringsinstitut [EVA] 2009). In addition, digital mathematics tools, such as dynamic geometry
environments and computer algebra systems, increasingly integrate functionalities from both
geometry and algebra (Freiman, 2014; Sutherland & Rojano, 2014), offering new possibilities and
complexities that often surpass the understanding of laypersons. This study reported in this
dissertation has both practical and theoretical aims. Practically, it investigates how the integration of
digital tools in geometry and algebra can support students’ reasoning processes in lower secondary
mathematics education and emphasizes enabling students to exercise their mathematical reasoning
competency rather than developing the competency as such. Theoretically, the study seeks to promote
sustainable theoretical development by linking the KOM-framework with international mathematics
education research. This is achieved by adopting a networking perspective (Prediger, Bikner-Ahsbahs,

et al., 2008) on theory development.

Design research (Bakker, 2018; Cobb et al., 2003; Gravemeijer & Prediger, 2019; McKenney & Reeves,
2014). as the methodological framework for this project, guiding the collection and analysis of data, as
well as the establishment of learning situations that incorporate mathematical reasoning competency,
digital technologies, and the variable as a generalized number. A microworlds (Hoyles, 1993) of
variable points along with task sequences were developed, aiming for students to exercise
mathematical reasoning competency by investigating basic algebraic expressions and their structural

implications in the dynamic behavior of variable points.

In addition to the KOM-framework, the project employs other theoretical perspectives, such as the
instrumental approach to mathematics education (IAME) (Guin & Trouche, 1998) and the elaborated
notion of a scheme (Vergnaud, 1998b) in relation to the scheme-technique duality (Drijvers et al.,

2013), and Toulmin’s (2003) argumentation model. These perspectives are used for analyzing,
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describing, and explaining empirical data, particularly regarding students’ use of digital tools and their

mathematical reasoning competency.

The dissertation comprises six research papers and an accompanying kappa that provides the
theoretical background, methodology, additional analysis, and results. Paper 1 is a literature review
that identifies potential tools within GeoGebra, a dynamic geometry and algebra environment, for
student justifications of the variable as a generalized number, which informed the task design. Papers
2 through 5 analyze empirical data from students working with different tasks and the development of
an analytical tool for instrumented justification. Paper 2 introduces the initial connection between the
KOM and IAME frameworks, interpreted through Toulmin’s model, leading to the creation of an
analytical tool. Paper 3 refines this tool, defines instrumented justification, and describes students’
justification processes using artifacts. Paper 4 focuses on the goal of student tool use within a task that
is further developed, examining its potential and challenges for exercising reasoning competency.
Paper 5 emphasizes the scheme aspect of the analytical tool, analyzing Vergnaud’s (1998) scheme
components and elaborating on how students’ conceptual knowledge integrates into their
instrumented justification processes. Paper 6 addresses the notion of foreground and background

theory within the networking of theories perspective.

The dissertation contributes three design principles for task design that support students’ exercise of
reasoning competency, a microworld for exploring and justifying the dynamic behavior of variable
points, and associated tasks. It also elaborates on reasoning competency in students’ instrumented
justification processes and the scheme-technique duality and provides suggestions for supporting
these processes in the classroom and through task design. Additionally, it identifies a hybrid
conception between continuous and discrete understandings of variables in predicting variable
behavior within the dynamic geometry and algebra environment and suggests theoretical links

between the KOM and IAME frameworks as potentials for further theoretical networking.
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RESUME

I de seneste artier er to fokusomrader lobende blevet diskuteret inden for forskningen i
matematikdidaktik. Det forste fokusomrade italesaetter at mestre og laere matematik som besiddelse
og udvikling af matematisk kompetence i stedet for viden og lering af matematiske fakta og
feerdigheder (Niss, 2016). Det andet omrade udforsker brugen af digitale teknologier i undervisning og
leering af matematik (Artigue & Trouche, 2021). Den danske KOM-rapport skitserer otte matematiske
kompetencer, der beskriver aktiviteter relateret til at udeve og hndtere matematik (Niss & Hgjgaard,
2019). Blandt de otte kompetencer er matematisk raesonnementskompetence, som er
omdrejningspunkt for dette studie. Resonnementskompetence indebarer at analysere eller producere
argumenter for at begrunde matematiske pastande (Niss & Hgjgaard, 2019). Kompetencerne, sammen
med brugen af digitale vaerktgjer, er en del af de danske matematikleereplaner pa bade grundskole- og

gymnasieniveau (Danmarks Evalueringsinstitut [EVA], 2009).

Moderne digitale matematikvaerktgjer, sdsom dynamiske geometri programmer og computer algebra
systemer (CAS), integrerer i stigende grad funktionalitet fra hinanden (Freiman, 2014; Sutherland &
Rojano, 2014), hvilket giver nye muligheder men ogsa gger programmernes kompleksitet. Dette studie,
rapporteret i denne afthandling, har bade praktiske og teoretiske formal. Praktisk undersgges, hvordan
integrationen af geometri og algebra i digitale matematikvaerktgjer kan stotte elevers
raeesonnementsprocesser i udskolingens matematikundervisning. Studiet laegger veegt pa at gore det
muligt for eleverne at udeve deres matematiske reesonnementskompetence snarere end som sddan at
udvikle elevernes kompetence. Teoretisk sager studiet at fremme baeredygtig teoretisk udvikling ved
at forbinde KOM med international matematikdidaktiskforskning. Dette opnas ved at anvende et

netvaerksperspektiv (Prediger, Bikner-Ahsbahs et al., 2008) péa teoriudvikling.

Projektets metodiske udgangspunkt er designbaseret forskning (Bakker, 2018; Cobb et al., 2003;
Gravemeijer & Prediger, 2019; McKenney & Reeves, 2014). Det har guidet indsamling og analyse af
data samt design af opgaver, der fordrer elevers udgvelse af matematiske reesonnementskompetence i
brugen af digitale teknologier med fokus pa variable som et generaliseret tal. I den henseende er der
udviklet og designet en “microworld” (Hoyles, 1993) med variable punkter med tilhgrende
opgavesekvenser. Den er udviklet med henblik pa at lade eleverne udeve matematiske
raesonnementskompetencer gennem deres undersggelse af grundleggende algebraiske udtryk og

strukturelle implikationer i de variable punkters dynamiske egenskaber.

Udover KOM anvender projektet andre teoretiske perspektiver, sdsom den instrumentelle tilgang til
matematikundervisning (IAME) (Guin & Trouche, 1998) og dens opfattelse af kognitive skemaer

(Vergnaud, 1998Db) i relation til skema-teknik-dualiteten (Drijvers et al., 2013), samt Toulmins (2003)
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argumentationsmodel. Disse perspektiver bruges til at analysere, beskrive og forklare empiriske data,
serligt i forhold til elevernes brug af digitale varktgjer og deres matematiske

reesonnementskompetence.

Afhandlingen bestar af seks forskningsartikler og denne tilhgrende rapport, der beskriver den
teoretiske baggrund, metodologi samt bidrager med yderligere analyser og resultater. Paper 1 er et
litteraturstudie, der identificerer potentielle veerktgjer i GeoGebra, et dynamisk geometri- og
algebraprogram, til elevers reesonnementer af variablen som et generaliseret tal. Paper 1 har informeret
studiets efterfolgende designprocesser og produkter. Papers 2 til 5 analyserer empiriske data fra elever,
der arbejder med forskellige opgaver, og udviklingen af et analytisk verktgj til instrumented
justification. Artikel 2 introducerer den indledende teoretiske udvikling i at forbinde KOM og IAME,
som genfortolkes gennem Toulmins model, hvilket forer til udviklingen af et analytisk veerktaj. Artikel
3 forfiner dette vaerktgj, instrumented justification, og beskriver elevers raesonnementsprocesser ved
brug af digitale vaerktgjer. Artikel 4 fokuserer pa elevers mal i brugen af digitale veerktgjer i deres
undersggelser og losning af en opgave. Opgaven videreudvikles pa baggrund heraf, og opgavens
potentiale og udfordringer for udevelse af reesonnementskompetence undersgges. Artikel 5 fokuserer
pa kognitive skemaer i det analytiske veerktoj i analyser af Vergnauds (1998) skema-bestanddele og
uddyber, hvordan elevers konceptuelle viden integreres 1 deres instrumenterede
resonnementsprocesser. Artikel 6 behandler begrebet forgrunds- og baggrundsteori i et

netveerksperspektiv pa teoriudvikling.

Afhandlingen bidrager med tre designprincipper for opgavedesign, der understotter elevers udevelse
af raesonnementskompetence, en “microworld” til at udforske og begrunde variable punkters
dynamiske bevagelse og tilhgrende opgaver. Den uddyber ogsa raesonnementskompetence i elevers
instrumenterede raesonnementsprocesser og skema-teknik-dualiteten og giver forslag til at
understotte disse processer i klasseverelset gennem opgavedesigns. Derudover identificerer den en
hybridopfattelse mellem kontinuerlige og diskrete forstielser af variable i forudsigelsen af variable
punkters bevaegelsesmgnstre i dynamiske geometri- og algebraprogrammer og foreslar teoretiske

forbindelser mellem KOM og TAME som potentialer for yderligere teoretisk udvikling.
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1 INTRODUCTION

Digital mathematics tools have become an integrated and widespread part of mathematics
education, originating a new paradigm for mathematics education (Mullis et al., 2016; Trouche et
al., 2013). Dynamic geometry environments (DGE) are predominant in mathematics education in
primary and lower secondary education (Mullis et al., 2016), whereas computer algebra systems
(CAS) are the main tool in upper secondary education in Denmark (Grgnbak et al., 2017; Trouche,
2005). However, the digital mathematics tools of today increasingly draw on functionalities from
one another, relating the two domains of geometry and algebra. This development renders both new

possibilities and increased complexity beyond the comprehension of laymen.

Alongside the increase of digital tools, the KOM framework (in short, KOM) was introduced in
Denmark with the Competencies and Mathematical Learning report from 2002 (Niss & Hgjgaard,
2011; Niss & Jensen, 2002). It compelled a shift in mathematics education in Denmark from
understanding mathematics and mathematics education to be a matter of skill and knowledge to one
of mathematical competence and mathematical competencies! (Niss & Jankvist, 2022). Among the
eight competencies, we have only just started to understand how digital tools influence and interplay

with students’ development of competencies.

The present PhD project studies lower secondary students’ mathematical reasoning competency
(RC) (Niss & Hgjgaard, 2019) in situations involving mathematical digital technologies that merge
CAS functionality into a DGE — resulting in a dynamic geometry and algebra environment (DGAE).
The impact of digital technologies on mathematical development and reasoning has been a
significant topic in mathematics education research (Artigue, 2010; Trouche et al., 2013). Niss
(2016) argues that digital tools can either enhance or replace mathematical competencies, depending
on their use. This emphasizes the educational value of tool use for educational prospects residing
within explorational and interpretational use of tools (Artigue, 2002), which is fundamental to
reasoning processes (Misfeldt & Jankvist, 2019). The practical aim of this study is to address how

DGAEs can play such a role in students’ RC in lower secondary mathematics education.

1 KOM differentiates between competence and competency. While mathematical competence involves using
mathematics to tackle various challenges, mathematical competency focuses on addressing specific types of
challenges requiring particular mathematical skills. Thus, mathematical competence is built from a set of
mathematical competencies.



The KOM framework has been developed within a national context, so in order to explore both RC
and digital tools, it is necessary to relate the framework to international mathematics education
research (MER). MER encompasses a diversity of concepts, frameworks, and theories that have
originated and evolved within a diverse research community (Prediger, Bikner-Ahsbahs, et al.,
2008) and may not necessarily incorporate a competency perspective. Therefore, extending the
boundaries of a framework developed at a national level to incorporate theories from the internal
research community requires careful consideration to maintain the original identity of the KOM

framework.

The research practice of networking theories (Prediger, Bikner-Ahsbahs, et al., 2008) offers both
perspectives on reflective practices for connecting theoretical approaches as well as strategies to
integrate theoretical approaches. Linking RC with other theoretical approaches resembles what Niss
and Jankvist (2022) describe as mutual fertilization and can suggest potentials of such integration.
With this in mind, the overarching goal of the study is to promote sustainable theoretical
development that links the KOM framework with theories in MER, by addressing the practical aim
of investigating the potential of DGAEs for students to exercise their RC.

1.1 MATHEMATICAL COMPETENCIES IN MER AND CURRICULA

Already in 1973, McClelland advocated for assessing education with regard to competence instead of
intelligence. Since then, the concept of competence has gained significant traction, particularly in
curricula and educational research. Numerous competency frameworks have emerged, such as the
21st century skills (Berthelsen, 2017; Partnership for 21st Century Skills 2002), The general term
competency can be akin to “ability, capability, cognizance, effectuality, efficacy, efficiency,
knowledge, mastery, proficiency, skill, and talent” (Kilpatrick, 2014, p. 85). The Danish response to
the competency paradigm originated with the KOM project, resulting in the KOM report in 2002
(Niss & Jensen, 2002) (Jensen is now Hgjgaard). This report has been translated to English by Niss

and Hgjgaard (2011) and revisited in Niss and Hgjgaard (2019).

In all, the KOM framework describes eight distinct, yet mutually related, mathematical
competencies; the one of relevance in this study is the RC (Niss & Hgjgaard, 2011, 2019). The
framework has had significant influence on the education system in Denmark but has also
“generated extensive discussion and a multitude of additional conceptual developments, oftentimes
in connection with different theoretical, empirical and practical uses of the notions, as reflected in
many publications” (Niss & Hgjgaard, 2019, p. 2). Hgjsted (2021), Thomsen (2022), Bach (2022)
and (Pedersen, 2024) are all examples of this, and international collaborations have resulted in the
book Mathematical Competencies in the Digital Era (Jankvist & Geraniou, 2022). Moreover, the

research project “The Didactics of 21st Century Mathematics Teaching and Learning or



Mathematical Competencies and ICT”, in which this PhD project is rooted, aims to connect theories
from MER to the KOM framework to better understand the interplay of digital tools and students’

mathematical competencies.

1.1.1 Reasoning competency

RC has undergone significant development from the original framework (Niss & Hgjgaard, 2011;
Niss & Jensen, 2002) to Niss and Hgjgaard (2019), as the emphasis has changed from proof to
justification. This is both evident in the definition and description. Originally, the authors wrote that
RCis:

on the one hand, the ability to _follow and assess mathematic reasoning, i.e. a chain
of argument put forward by others, in writing or orally, in support of a claim. It is
especially about knowing and understanding what a mathematical proofis and how
this differs from other forms of mathematical reasoning. (Niss & Hgjgaard, 2011, p.
60)

The revised version of RC, however, is defined as “to analyze or produce arguments (i.e., chains of
statements linked by inferences) put forward in oral or written form to justify mathematical claims”
(Niss & Hgjgaard, 2019, p. 16). Additionally, the early description mentioned proof on four separate
occasions, and only hints to other reasoning forms as “informal arguments”. In the revised
description, proof appears once and justification four times, and it is stressed that “the kinds of
claims at issue in this competency are not confined to “theorems” or “formulae” but comprise all
sorts of conclusions obtained by mathematical methods and inferences, including solutions to

problems” (Niss & Hgjgaard, 2019, p. 16).

Reasoning as proof only receives little attention in the lower secondary education (Ministry of
Children and Education, 2019), whereas justification is applicable to other and more occurrent
processes in mathematics teaching and learning at this educational stage, such as problem-solving
processes. The prior emphasis on proof in RC is also reflected in the research on RC at lower
secondary education and the use of technology, for example Hgjsted (2021) and Thomsen (2022),
who both regard aspects of proof. The shift in emphasis with respect to RCs has implication for lower
secondary education. Otherwise, this study emphasizes justification processes, aligning with the
revised description of RC, and hence contributes with new aspects to our understating of students’

use of tools in relation to the competency.

1.2 THE USE OF TOOLS IN EDUCATION AND MER

MER on digital tools in mathematics education has developed from the ideas and ideals of Papert

(1980), which materialized in the turtle programming software LOGO, to the study of DGE, CAS
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(Villa-Ochoa & Suarez-Téllez, 2021) and microworlds (Edwards, 1998). Throughout the last decade,
DGE and CAS software has adopted features from each other, providing symbolic manipulation of
geometric construction and graphs, plots, etc. (Hohenwarter & Jones, 2007). The one mathematics

software that has taken the development to the full extent is GeoGebra, which

provides a closer connection between the symbolic manipulation and visualisation
capabilities of CAS and the dynamic changeability of DGE. It does this by providing
not only the functionality of DGE (in which the user can work with points, vectors,
segments, lines, and conic sections) but also of CAS (in that equations and
coordinates can be entered directly and functions can be defined algebraically and

then changed dynamically. (Hohenwarter & Jones, 2007, p. 127)

As such, GeoGebra is a digital environment that combines the traditional features of a DGE with the
algebraic features of a CAS tool. This is, for example, evident in the so-called algebra view, where
symbolic representations of items in the graphic view can be constructed and manipulated.
Furthermore, GeoGebra has been developed as an educational tool (which is common for DGEs)
rather than an expert tool (which is often the case for CAS). In the Danish educational system
GeoGebra is widely implemented in both primary and lower secondary school mathematics
education (Hgjsted, 2020b). GeoGebra is widespread as it is free, open source (Sutherland & Rojano,

2014), and has been translated into many languages.

Affordances particularly associated with the integration of geometry and algebra are the dynamic
characters of multi-representation, which can “contribute to improvement in the reasoning,
understanding, and conceptualization of mathematical objects” (Villa-Ochoa & Suarez-Téllez, 2021,
p. 5). Nevertheless, the potential of the algebra view for the learning and teaching of mathematics,
and in particular students’ development of RC, is yet to be fully unveiled (e.g., Hohenwarter & Jones,

2007).

The use of DGE and CAS allows for the exploration and investigation of mathematical concepts
through access to multi-representation (Drijvers et al., 2009). However, this potential is not
automatically realized, especially when students encounter challenges in using the tools or
understanding the mathematical content, deflecting the students’ focus from mathematical
reflection (Guin & Trouche, 1998). In MER, there are two dominating theories concerning students’
use of tools: the Instrumental Approach to Mathematics Education and the Theory of Semiotic
Mediation. The Theory of Semiotic Mediation is based on the instrumental approach and emphasizes
the role of the teacher, while the Instrumental Approach to Mathematics Education emphasizes the

co-development in the interactions between student and tool. The latter approach is rooted in



cognitive ergonomics and has two directions, one evolving within Anthropological Theory of

Didactics and another from Vergnaud’s definition of schemes (Artigue & Trouche, 2021).
1.4 The Danish school system

The Danish education system mandates ten compulsory years of schooling, spanning primary
education (oth grade-6th grade) to lower secondary education (7th—9th grade). Upper secondary
education, inclusive of 10th to 12th grades, branches into academic (called gymnasium), vocational,
and technical tracks (Ministry of Children and Education, 2018; Ministry of Children and Education

2021).

The national mathematical curriculum, which applies from primary school through upper secondary
school, incorporates mathematical competencies as outlined in the KOM framework (Ministry of
Children and Education, 2019; Ministry of Children and Education 2021) and provides general aims
and guidance. Denmark maintains a free market for teaching materials, allowing teachers and
schools the freedom to choose the materials they prefer to use (Danmarks Evalueringsinstitut [EVA]
2009). This also provides ample opportunities for research and collaboration with practitioners

without compromising curricular required plans and materials.

1.3 PERSONAL MOTIVATION

As a mathematics teacher, KOM has been my didactical anchor for teaching mathematics. However,
taking a master’s degree in didactics of mathematics became an eye opener for what MER has to
offer practitioners. I often found that much of the existing literature on reasoning adopted an expert
perspective on students’ reasoning attempts (e.g., Duval, 2007; Harel & Sowder, 2007), evaluating
students based on what their arguments lack, from an idealistic mathematical standpoint, rather
than being curious about students’ reasonings and acknowledging the learners’ paths as valuable.
The expert perspective simply did not resonate with the experiences I had as a teacher in primary
and lower secondary school. The expert view was also present in the original version of RC, holding
the ideal of proof and logic to be essential for the competency. However, the revised version of RC
(Niss & Hgjgaard, 2019) articulated an inclusive view of reasoning and reasoning processes. I found
that the revised version of RC presented an opportunity to approach reasoning from a student
perspective, considering what students find evidential and how that emerges in their justification
processes using DGAE. It has therefore been crucial for me to adopt and elaborate student
perspectives in justification processes, and I hope to contribute to MER by giving insights on

students reasoning as valuable in their own educational journey.

Another implication of my master’s studies was that I became aware of the vast knowledge in the

research field that has yet to disseminate into practice. As a way of impacting the field beyond my
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own classroom, I became an editor of digital resources for an educational publishing house,
responsible for a mathematics platform for digital learning resources. One of my main tasks was
integrating GeoGebra into the platform, which required collaboration with mathematicians,
teachers, authors, and technicians. The experiences I gained in this position have been invaluable as
I transitioned into my PhD project. GeoGebra proved to be more than a mathematical problem-
solving tool, as it became a transformative environment for didactical design, enabling the creation
of templates and resources that lets students explore mathematical concepts. Ultimately, for me this
study has been an extension and a deep dive into aspects that were already at heart, designing

mathematics educational resources well-informed by research.

1.4 STRUCTURE OF THE DISSERTATIONS

The dissertation is composed of six research papers and this kappa. The kappa introduces and
explains the project, relates the results of the six papers, and provides additional results. It consists
of eight chapters: 1) the introduction, 2) the theoretical foundation and perspectives 3) research
questions, 4) the methodology, 5) the execution of the study, including a summary of the six papers,
6) design results, 7) analytical results, 8) theoretical developments, 9) the discussions and

conclusion.

Chapters 6, 7, and 8 each contain a discussion of the results, and the final discussion in Chapter 9

revisits the methodology and discusses quality and overarching topics and concludes the study.

Appendix A and B contain sets of tasks used in classroom experiments, and Appendix C includes a

list of abbreviations used in the kappa.

Chapter 2 begins with a discussion of the concept of theory, followed by a description of networking
of theory as a research practice aligning with the research aim. It then presents the theoretical
framework and foundation of the project, discussing the KOM framework, reasoning in school
mathematics, and the use of tools in mathematics education, including the instrumental approach
to mathematics education (IAME). Chapter 3, building on the theoretical framework, introduces and

elaborates the projects three research questions.

Chapter 4 describes the methodology of the study, which is educational design research (DR),
including how networking practices are intertwined in the processes and the use of theory in DR.
Chapter 5 details how the DR methods have been executed and elaborates on the type of DR study,
overview of the execution of the study, and provide contexts for classroom experiments, as well as
methods for collecting data. The purpose is to clarify the working process and the associated
decisions. Then, it provides an overview of publications related to the study, and it describes the six

papers in relation to the study and its results.



Chapter 6 details the design processes and classroom experiments that led to the development of
practical design principles, a microworld, and tasks. The experiments were conducted in three

iterations of preparation, testing, and analysis.

Chapter 7 analyzes and discusses the practical implications of the relationships between students’
tool use and RC, drawing on findings from papers, as well as additional analysis and results. Chapter
8 describes and discusses the theoretical developments throughout the study, presenting and
proposing practical links of RC with the KOM framework and the IAME.

Chapter 9 discusses the methodological steps taken toward answering the research questions and
the quality of the results. It also debates various practical aspects across the study, such as assessing
RC in the context of tool use and how a particular tool within GeoGebra, the slider tool, can be
beneficial for justifying algebraic structures. This leads to the conclusion of the dissertation, which

summarizes the answers to the overall research questions.






2 THEORETICAL FOUNDATION AND PERSPECTIVES

This chapter introduces the theoretical considerations and approaches of the study as a whole and
across papers and forms the basis for formulating the research questions presented below in Chapter
3. The chapter comprises two parts. The first part deals with fundamental questions and the
perspective of scientific use of theory. It includes a discussion of the notion of theory and its use, and
an overview of the networking approach. The second part elaborates on the theories applied in the
study, as well as state of the art concerning the central aspects of the project: students’ exercise of

RC in justification processes and the use of tool.

2.1 PERSPECTIVES ON THE NOTION OF THEORY

“There is no shared unique definition of theory or theoretical approach among mathematics
education researchers” (Bikner-Ahsbahs et al., 2014, sec. 2). Hence, it is crucial to provide a clear
and comprehensive discussion of the concept of theory before employing the theoretical frameworks

of this study.

Theorizing serves several purposes, and usually more than one is at play. In MER, Niss (2007)
identifies several objectives of using theory. A theory can be used to explain phenomena, which is
closely related to predicting phenomena, as the latter may depend on the former. Theory can be
utilized to guide action or implementation to achieve a specific objective or to prevent scientific
misconduct and criticism. Lastly, theory can provide a structured set of lenses to observe and
interpret domains of the real world. Niss (2007), along with Schoenfeld (2007), signify the

importance of this particular purpose:

all empirical research is concerned wide and deeply grounded in (at times tacit but
nevertheless strong) theoretical assumptions. Even the simplest observations or data
gathering is conducted under the umbrella of either implicit or explicit theoretical
assumptions, which shape the interpretation of the information that has been
gathered. Failure to recognize this fact and to act appropriately on it can render

research worthless or misleading. (p.70)

Mason and Waywood (1996) have put notions to this issue with their distinction between foreground
and background theory. Foreground theory is an explicit form of hypothesizing in mathematics
education that involves asking and answering questions. In MER most of the theoretical work falls
within this category. Developed frameworks ore construct present an explicit hypothesis about what
occurs, or can occur, under specific circumstances and can serve various functions, including

description, explanation, prediction, and informing practice. Background theory, on the other hand,



refers to implicit hypothesizing or beliefs that guide behavior. This includes the aims and goals of
the research, the objects studied, the methods used, and the perceived situation, all of which are
shaped by a philosophical stance. According to Mason and Waywood (1996), research in
mathematics education is based on a background theory of mathematics education, which does not
become a foreground theory even if the hypothesis becomes explicit. This means that theorizing,
such as framing questions, collecting data, and analyzing results are determined and constructed by
the discourse and philosophical stance of the background theory, but are not used with an explicit
aim. Examples of such theories are postmodernism, phenomenology, or constructivism. The
background theory hence provides the conditions for the structure of the research, but it is not itself
a theory generated within MER. The distinction captures the fact that MER theories are traditionally
inspired by other fields (e.g., psychology, general education, and mathematics), making the
distinction between background and foreground theories paramount when describing the core of a
theory. More recently, however, MER has shifted toward theory building within the research field,
rather than relying on theories borrowed from other fields (Lesh et al., 2014). These theories do not
necessarily build on a background theory outside MER. One can consider the grounded theory
approach (Vollstedt & Rezat, 2019), where theory emerges from an empirical discourse rather than
a theoretical one. Considering the growing trend of theory building within MER brings perspective
to the remark of Bikner-Ahsbahs et al. (2014), that if background and foreground theories are
considered “relative distinctions rather than an absolute classification, they can help to distinguish
different views on theories” (p. 6). In paper 6, we acknowledge that theory from inside MER can have
elements that act as background theories in research practices. Concurrently, we challenge whether
a relative distinction is purposeful, as it may blur the fact that a background theory resides outside
of MER and has a larger scope. Furthermore, we identify cases of the use of the relative distinction,
where theory from inside of MER acted as background in certain situations and as foreground in
other situations. To accommodate the need to characterize such elements and this dynamic use of
theory, we suggested that theories from inside MER that act as background theories are at least

referred to as background theories inside MER or framing theories.

As already noted, the definition of theory is not agreed upon in MER. Theory generally consists of a
core, empirical components, and an application area (Prediger, Bikner-Ahsbahs, et al., 2008)
Bikner-Ahsbahs et al. (2014) suggest that theories should be viewed dynamically, as they are always
in a state of flux. This is due to the inherent dialectic of theorizing: theories guide research practices
and are in return influenced by them or even become the aim of research practices. This contrasts
with a static view of theory as a finished analytic tool that organizes and systematizes parts of the
real world. Although agreeing that theories are in a state of flux, Niss (2019) maintains that it “...does

not mean that the definitions of the concepts are as well”, and that “if we refuse to offer definitions
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of these terms, we end up taking them for granted according to our private understanding, and we
don’t know what we are talking about!” (Niss, personal communication, May 9, 2019). Hence, he

challenges the overly broad definitions of theory, such as, e.g., in the JRME editorial by Cai et al.
(2019):

In this editorial, we use the term theoretical framework broadly (similar to the
treatment of conceptual frameworks by Eisenhart, 1991, and Lester, 2005) to
encompass the set of assumptions, theories, hypotheses, and claims (as well as the
relationship between them) that guide a researcher’s thinking about the phenomenon

being studied. (p. 219)

Radford (2008) suggests a triplet set (P, M, Q), where “theory can be seen as a way of producing

understandings and ways of action based on:

e A system, P, of basic principles, which includes implicit views and explicit statements that
delineate the frontier of what will be the universe of discourse and the adopted research
perspective.

e A methodology, M, which includes techniques of data collection and data interpretation as
supported by P.

e A set, Q, of paradigmatic research questions (templates or schemas that generate specific
questions as new interpretations arise or as the principles are deepened, expanded or

modified). (p. 320)

Radford (2012) later extended the definition to encompass results (R), which drive the development
of P, M and Q: “There is indeed a dialectical relationship among the various components of a theory.
The dialectical relationship is mediated by the results that a theory produces” (p. 5). Radford’s
definition addresses clearly ‘the core’ of a theory in terms of the system of P and ‘the application’ by

M and Q. However, ‘the empirical component’ is a connotation in the system of P.2

Radford does contemplate how facts of objects appear throughout the history of scientific
investigation, and he outlines two positions. In the first position, “the fact refers to general
principles; the fact is a particularization of the general” (Radford, 2012, p. 3). In the second position,

“the fact generates the principle through an inductive process” (Radford, 2012, p. 3). He concludes:

2 Examples of object and phenomena in principles are found in Radford (2018)
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“The understanding of the phenomena under investigation can only be achieved against the
background of general principles” (Radford, 2018, p. 4). From his conclusion, we may understand
that principles are general facts about objects. An example, formulated by Radford, is a principle of
constructivism about the phenomenon of knowledge appropriation: “knowledge is not passively
received but built up by the cognizing” (Radford, 2012, p. 4). Despite Radford’s elaboration on
objects of theory, Bikner-Ahsbahs and Prediger (2014), in their comparison of five different
theoretical approaches, found a need to add “key constructs” to P in the triplet PMQ. Key constructs
is a term for the objects and phenomena under study, and it underlines a need for stronger
clarification of the empirical component than Radford’s definition offers. Thus, the implicitness of
objects in Radford’s definition is problematic since the ‘objects’ of research are essential when
considering which theories are comparable and compatible, and how. As Niss (2019, personal
communication, May 9, 2019) argues, a theory must be a theory of something, and Niss and Jankvist

(2022) suggest a definition that centralizes the objects and phenomena of a theory:

A theory is a theory of something, i.e., it deals with certain sorts of objects and
phenomena and includes terms for these. Its purpose is to produce corroborated
claims about these objects and phenomena, typically in response to questions posed
about them. These claims are generated by some means, on some grounds, involving

some fundamental methodology/ies. (p.17)

There are notable similarities between Radford and Niss and Jankvist. Niss and Jankvist’s definition
includes “questions” similar to Radford’s Q; Niss’ and Jankvist’s “means” and “methodology/ies” are
similar to Radford’s M; and finally, Niss’ and Jankvist’s “corroborated claims” and “grounds” are

similar to Radford’s P.

The main difference between the two definitions is their central focus. Radford’s definition focuses
on the set of principles. P is the first-mentioned element and reoccurs in the description of both M
and Q. Radford’s concern with the dialectic surrounding phenomena — the system of P — gives
strength to an elaboration of a background theor, as theory is rooted in a systematized discourse.
Radford has so far not elaborated on the scope of his definition. It is unclear whether he differentiates
theory elements that can be perceived as foreground theory such as theoretical framework,
theoretical approach, and theoretical construct, which leaves an undefined cluster of theoretical

notions.

Niss and Jankvist’s (2022) definition focuses on objects and phenomena and the production of
predictive or explanatory claims about such. Consequently, the values and norms of the theory are
implicit (Prediger, Bikner-Ahsbahs, et al., 2008) in the corroborated claims and grounds. Niss

(2007) and Niss and Jankvist (2022) also stress that only a few actual theories exist in MER:
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Although we would, in fact, grant the label “theory” to some constructions in
mathematics education—e.g., Brousseau's (1997) theory of didactical situations, or
Chevellard‘s (2019) anthropological theory of the didactic (ATD), and the APOS
theory developed by Dubinsky (1991) [...] At any rate, the number of theories in

mathematics education is, at best, extremely small. (p. 5).

Given that Mason and Waywood’s (1996) definition of background theory includes the aims and
goals of the research, the objects studied, the methods used, and the perceived situation, Niss and
Jankvist’s (2022) definition reflects this sense of theory. Contrary to Radford, they do consider the
aforementioned cluster of theoretical notions that reflect foreground theory. They describe a
theoretical perspective as one or more theoretical approaches that are part of the solution to the
research problem. The following notions of theory are examples of the extent of different theoretical
perspectives. A theoretical construct is a concept introduced by way of a definition. It can rest on
certain assumptions or hypotheses and can involve certain claims. It can be a singular construct such
as sociomathematical norms (Yackel & Cobb, 1996) or a distinction such as Tall and Vinner’s (1981)
concept image and concept definition. A collection of one or more theoretical constructs is

considered a theoretical framework that:

frames—i.e., provides the foundation for—the conceptualisation, design or carrying
out of the study, including its interpretations, analyses or inferences. The elements of
a theoretical framework do not have to be linked so as to form a full-fledged theory.
In fact, the framework does not even have to be coherent or exhaustive but may take
the shape of bricolage (Cobb, 2007; Gravemeijer, 1994) of singular theoretical

constructs. (Niss & Jankvist, 2022, p. 18)

Finally, a theoretical approach is a conceptual and theoretical investigation of the research problem,

usually by incorporating or developing some theoretical constructs.

Niss and Jankvist (2022) also draw out three different target levels or grain sizes of theoretical
approaches: local, medium, and global. Global corresponds to their definition of a theory and are
hence scarce in MER. Medium deals with “a generic set of topics or issues across several domains”

(p- 19), while local deals with a specific topic or issue.

In the closing of this part, I would like to underline that the intention is not to take sides or favor one
tradition over another. That said, to be consistent in terms and approach I will adhere to Niss and
Jankvist’s (2022) definition of theory and notions of theory, as they offer a more elaborate system of
notions. Prediger, Bikner-Ahsbahs, et al. (2008) appeal for a broad definition to not exclude any

theories. Indeed, Niss and Jankvist’s (2022) approach excludes most theoretical approaches in MER
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as a theory. However, in the cluster of notions of theory, the theoretical approach is the most

inclusive notion, where only empirical approaches are excluded.

2.1.1 Linking theory

Lerman (2006) pleads for considering the diversity of theoretical approaches in MER as a source of
richness that is necessary to grasp complexity. Prediger, Bikner-Ahsbahs, et al. (2008) argue that
the “richness of plurality can only become fruitful when different approaches and traditions come
into interaction” (p. 169). Fruitful interaction of theoretical approaches can advance different
purposes, such as better understanding of theories, capitalizing on collective research results,
obtaining coherency in MER, controlling the excessive growth theories, improving teaching and
learning in mathematics education, and finally, guiding design research (Prediger, Bikner-Ahsbahs,

et al., 2008).

Networking of theories (NT) progresses fruitful interaction between different theoretical
approaches. It has grown out of the thematic working group “Theoretical perspectives and
approaches in mathematics education research” at the Congress of European Research in
Mathematics Education (CERME) (Kidron et al., 2018). The group confronts the diversity of MER
theories, both as a challenge for the research community but also as a richness that can be a starting
point for a development. Subsequently, NT aims to produce understanding and connections
between the myriad of theories. Prediger, Bikner-Ahsbahs, et al. (2008) have systematized and
termed strategies for relating theories, which they collectively call connecting strategies (Bikner-
Ahsbahs, 2016; Prediger, Arzarello, et al., 2008). The strategies draw out a one-dimensional scale
where strategies are placed according to the degree to which they integrate theoretical approaches
(see Figure 1). The extreme strategies of ignoring other theories and unifying globally are not
considered as NT. In the first case, as implied, no connections are made, resulting in the cultural
isolation of theoretical approaches. The latter speaks to the idea of one global theory of mathematics
education, which in practice would result in ignoring conflicting theories and devaluating the
richness of diversity that Lerman (2006) pleads for. Ultimately, unifying globally acts as a virtual
extreme. As depicted in Figure 1, the intermediate strategies are defined as networking strategies
that “are those connecting strategies that respect on the one hand the pluralism and/or modularity
of autonomous theoretical approaches but are on the other hand concerned with reducing the
unconnected multiplicity of theoretical approaches in the scientific discipline” (Prediger, Bikner-
Ahsbahs, et al., 2008, p. 17). Often more than one strategy is needed to reach the aim of a given
process of NT. For instance, understanding others and making understandable will be the first step
to obtain any higher degree connection. The strategies are presented in pairs that serve the same

aim.
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Figure 1 - Prediger, Bikner-Ahsbahs, and Arzarello (2008). Landscape of strategies for connecting
theoretical approaches

making under-
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ing others

Understanding others and making own theories understandable is essential for in networking
practices. The strategies goes beyond understanding definitions and the hierarchy of terms and
methodology to uncover both explicit and implicit assumptions (Prediger, Bikner-Ahsbahs, et al.,
2008). Understanding other theoretical approaches can be an aim in itself, and conversely,
practicing NT can contribute to a deeper understanding of both one’s own and other theories, which

is why these two strategies are an implicit permanent aim of any NT practice.

Comparing seeking commonalities between theoretical approaches and contrasting points to
differences. Both can take on one or more of three theoretical aims: furthering the understanding of
the investigated approaches, positioning a theory (as valuable) in the field of theories in MER, and/or
describing a rational for the choice of theoretical approaches on a meta-level. Comparing and

contrasting can, like the previous strategies, be a step toward further integration.

In contrast to the former strategies, coordinating and combining has the empirical aim of
understanding a phenomenon or a piece of data (Prediger, Bikner-Ahsbahs, et al., 2008). These
strategies are relevant in triangulating a phenomenon, where two theoretical approaches can give a
richer and deeper insight and to capture phenomena that have inter-relational variables (e.g.,
students’ use of digital tools and their RC) which cannot be captured with a single theoretical
approach. They often result in a conceptual framework but do not necessarily present as completely
coherent. Coordinating aims at coherency between well-fitting elements from different approaches,
whereas combining is a juxtaposition of approaches and has a less ambitious aim for the coherency.
To ensure coherency when coordinating, theory elements should be carefully analyzed, and only

theories with compatible cores considered coherent (Prediger, Bikner-Ahsbahs, et al., 2008).

Synthesizing and integrating aims at theory development. These strategies are a continuation of
coordinating, moving beyond the understanding of empirical phenomena to theory building with

coherent approaches. The two strategies differ in the status of the theoretical approaches in play.
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Synthesizing demands a symmetry between the approaches, as when “two (or more) equally stable
theories are taken and connected in such a way that a new theory evolves” (Prediger, Bikner-
Ahsbahs, et al., 2008, p. 173). Integrating is when there is a difference in scope between the

approaches, and elements of only one approach are integrated into the other.

2.1.2 Methods and practices for NT

Each of the strategies can be carried out using different methods, which will spring from the
approach, focus, concepts and methods in play, and the aims of the networking. Hence, there are a
diversity of methods and methodology within each strategy (Prediger, Bikner-Ahsbabhs, et al., 2008).
However, some strategies can be considered particularly relevant to pair with specific
methodologies. Coordinating and combining fit the aims of design research (diSessa & Cobb, 2004)
for understanding an empirical case and developing theories (Prediger et al., 2008; Prediger, 2019),
for example, presenting a case where strategy coordinating is embedded in a design research study

to strengthen the empirical analysis and the development of design principles (Van den Akker, 1999).

Networking practice involve close attention to both the theoretical approaches. The higher
integration, the more carefully one must consider coherency and compatibility of the background of
the theoretical approach and the different elements of the theory (Prediger, Bikner-Ahsbabhs, et al.,
2008). Radford (2008), in continuation of his definition of theory, suggests comparing theories by
the set (P, M, Q) to reveal commonalities, distinctions, and compatibility. He argues that connections
can be made between the same elements, e.g., between the principles of each theoretical approach,
or across elements, e.g., between the principles of one theory and the methodology of another.
Radford (2008) also conjectures that: “theories are more likely to be connected if their theoretical

principles (or at least some of them) are ‘close’ to each other” (p. 323).

Niss and Jankvist (2022) suggest a graph-theoretical metaphor in which a set of nodes are theoretical
entities that may be linked by edges to form a network. The links can be different, and they argue
that: “A fundamental issue for linking two theoretical entities is whether these represent two
different ways of dealing with the same object(s) or phenomena, or whether they deal with different
objects or phenomena” (p. 32). Like Radford (2008), they stress that the purpose of connecting
theories is fundamental to the nature of the connection. In their considerations of linking KOM to
other theoretical approaches, they reflect on two purposes. Mutual fertilization by linking a
theoretical approach to KOM, where both elements are enriched with perspectives they did not
contain on their own and a methodological means to uncover a phenomenon of which each
theoretical approach has methods to capture different aspects. These goals fall within the strategies
of coordinating and combining, which Niss and Jankvist argue to be the highest degree of integration

that can be done with the KOM framework.
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To make connections between theoretical approaches, Bakker (2016) suggests the use of boundary
objects to assist in crossing the cultural boundary between theoretical approaches. Boundary objects

must be

both plastic enough to adapt to local needs and the constraints of the several parties
employing them, yet robust enough to maintain a common identity across sites. They
are weakly structured in common use, and become strongly structured in individual

site use. (Star & Griesemer, 1989, p. 393)

Bakker (2016) elaborates on how similarities can be drawn between the approach of boundary
crossing and NT, as both practices consider how “people seek to make connections between practices
or praxeologies that have different origins and purposes” (p. 271). To cross boundaries, they must
become permeable through communicative connections and efforts of translation. In this optic,
boundary objects are artifacts with a bridging function between practices so that initial boundaries
between research practices become permeable (Bakker, 2016). In the context of this study, two
separate research practices are in play, the study of students’ RC and the study of students’ use of
tools. A theoretical boundary object can assist in making mutually fertilizing connections between

the two practices.

2.2 (OVERVIEW OF THE PROJECT AND THEORETICAL FRAMING

Moving on from fundamental questions of theory, I now present the concrete theoretical framework

and approaches of the study and elaborate the state of the art of central aspects.

To provide an overview of the theoretical elements in the project, I use the pentahedron of Zbiek et
al. (2007) (see Figure 2), which signifies how digital technology influences various aspects of
mathematical learning among students. It contains the nodes student, mathematical content,
mathematical representation, mathematical activity, and digital tool. Lines illustrate the
interrelations between all nodes, and as the digital tool mediates activity between all nodes, the
dotted lines illustrate that the digital tool influences not only each node but also each relationship

(Zbiek et al., 2007). The pentahedron hence illustrates a closed system with the student as actor and
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the tool as mediator between nodes. Each node of the project is specified in Figure 3. As mentioned

in the introduction, the digital tool used in the study is GeoGebra, and the mathematical activity is

Figure 2 - Replication of Zbiek et al. (2007) pentahedron with nodes: student, mathematical
representation, mathematical content, mathematical activity, and the digital tools and relations among
them. Dotted lines represent the influence of the digital tools on nodes and relations between nodes

the exercise of RC in justification and concern students in lower secondary schools. The
mathematical content is variable as a general number in ordered pairs represented symbolically and

graphically in the coordinate plane. This allows for using the algebra and graphic views in GeoGebra.

I utilize different perspectives to capture the different relationships. KOM (Niss & Hgjgaard, 2019)

conceptualize the relationship student-mathematical activity and the IAME conceptualize the

Figure 3 - The nodes of pentahedron concretized with respect to the study

relationships student-digital and tool-mathematical content.
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The illustrations in Figure 4 show that the common node is the student but otherwise, there are no
overlaps between KOM and the Instrumental Approach. To bridge the two, the lack of overlap must
be addressed in the theory development of the study. What also appears is that the node
mathematical representation and its relationships are not theorized and hence mark the study’s

limits. However, the node is relevant and is elaborated in this chapter 6, with regard to DGAE. The
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Figure g4ab — a) The KOM framework conceptualizes the relationship student-mathematical activity. b)
The Instrumental Approach to Mathematics Education captures the relationships student-digital and
tool-mathematical content

mathematical content node concerning variables in ordered pairs is elaborated in Chapter 6 for the
context of designing tasks. Finally, even though the pentahedron is represented as a closed system,
it is part of a more extensive, surrounding system containing relationships to, e.g., other students,

the teacher, and institutions, which are also not theorized within the study.

In the follow section 2.3, describe the KOM framework. Section 2.4, position the study within
reasoning and justification in MER and section 2.5 discuss GeoGebra within the traditions of both
CAS and DGE, and describe GeoGebra’s interface and how variables are represented and used in

GeoGebra. Finally, section 2.6 discuss and explain the IAME.

2.3 THE KOM-FRAMEWORK

The competency description framework KOM describes mathematical mastery from the perspective
of competence. It was first introduced in the KOM report (Niss & Jensen, 2002), which presented
the results of the KOM project, developed by an extensive group of people lead by Niss, and organized
and founded by the Council of Science Education and the Ministry of Education in Denmark (Niss &
Hgjgaard, 2011). Since then, it has been translated into English in 2011 and revised in a more

condensed form aimed at an international audience in 2019 (Niss and Hgjgaard (2019).
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In KOM, a mathematical competency is defined as “someone’s insightful readiness to act
appropriately in response to a specific sort of mathematical challenge in given situations” (Niss &
Hgjgaard, 2019, p. 6). In total, there are eight distinct but related competencies, which are illustrated

in Figure 5.

Figure 5 - The KOM flower depicting the eight mathematics competencies

The competencies are divided into two categories: asking and answering in, with, and about
mathematics and dealing with mathematical language and tools. 1 focus on the RC in the first
category, which I will describe further in the next section. However, it is important to note that
tackling a mathematical challenge requires multiple competencies. While one competency may be in
focus in a particular educational or research setting, other competencies will be relevant. For
example, in this study, using a digital tool requires the students’ aids and tools competency, as well
as representation competency and symbol and formalism competency to handle the multiple

representations of GeoGebra. Therefore, after describing the RC, I also account for those.

The mastery of analyzing or producing mathematical arguments require RC. Arguments can be
presented orally or in writing and can take various forms, such as exemplifying and deductive or
formal proofs. An argument is a series of statements connected by inference and used to support

mathematical claims or solutions to mathematical problems (Niss & Hgjgaard, 2011, 2019).

A competency can be described and assessed according to its degree of coverage, radius of action,
and technical level. Essentially, this captures that competencies are related to form, situations, and

complexity:
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e The degree of coverage concerns the aspects of the competency. For the RC, these aspects
are to actively participate in oral and written reasoning for mathematical claims and critically
analyze and assess existing justifications and justifications put forward by others. The forms
of reasoning can be placed on a wide spectrum, from providing examples to rigorous proof.

e The radius of action is the variety of different contexts, mathematical or general, in which
the competency can be used. Contexts can be mathematical domains, different social
situations, or different mathematical situations.

e The technical level concerns the sophistication of concepts, results, theories and methods

used within the competency.

What activities fall within a given competency can in some cases be unclear. In principle, the ability
to carry out pure routine operations may fall within the RC since it involves justifying the results of
calculations. However, what one person may consider a routine operation, another person may view
as an insurmountable problem. Therefore operations is included under “the competency dealing
with mathematical symbols and formalisms while being able to activate the operation belongs under
the RC if this activation demands creativity, analysis, or overview” (Niss & Hgjgaard, 2011, p. 61).
The symbol and formalism competency is, hence, related to the exercise of RC and in particular the

technical level.

Likewise, the problem handling competency is particularly relevant, as problem-solving constitutes
a context for the student’s exercise of RC (Niss & Hgjgaard, 2019). The process of obtaining an
answer to a mathematical problem is core in problem handling competency as it involves posing and
solving mathematical problems by devising and implementing problem-solving strategies. It is

closely related to the RC, as it concerns justifying strategies and solutions.

When it comes to using a DGAE, there are certain competencies that are relevant. The multiple
representations in a DGAE require students to translate or interpret between these representations.
This requires representation competency, as well as understanding the strengths and weaknesses of

different representations (Niss & Hgjgaard, 2019).

Finally, the tools and aids competency is relevant, as it encompasses the constructive use of tools in
mathematical work. This also involves considering the affordances and limitations of different tools.
Niss and Hgjgaard (2019) underline the diverse physical properties of tools, which may not
necessarily have direct implications in mathematical contexts. This presents challenges that require

thoughtful consideration when integrating tools into mathematical situations.

The development of a person’s mathematical competence is achieved through active participation in

various mathematical situations. Competencies can be assessed over time or compared between
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individuals as progress in the three dimensions (Niss & Hgjgaard, 2011, 2019), but it is important to
remember that competency is context-specific. This study aims to examine the processes of
justification in the context of RC, rather than evaluating progress of student’s RC. Verbs such as
activating, implementing, displaying, and expressing can be used to describe a student’s use of their
competency. To emphasize the students as learners, I use the verb exercise. Thus, students are

exercising their RC in their “enactment of mathematical activities and processes” (Niss & Hgjgaard,

2019, p. 3).

2.4 REASONING AND JUSTIFICATION IN SCHOOL MATHEMATICS

The terminology of the reasoning literature in MER presents a diversity of perspectives and
definitions. This diversity necessitates defining the terminology used in this study and describing
how it situates the study within the broader literature on reasoning in mathematics education. Across
the literature, central terms like reasoning, proof, argumentation, and justification may overlap or

even be used interchangeably, but they can also be looked at from specific perspectives.

The study focus on the process of justification, however, to position the study I will first consider

reasoning, proof, and argumentation in mathematics education.

Since RC is the competency in focus, I use reasoning as an overarching term in the remainder.
Reasoning encompasses both the product and the process by which it comes to be, meaning that an
argument is a product of argumentation, a proof is a product of proving, and a justification is a

product of justifying/justification.

Reasoning can have different functions. All types of reasoning processes have in common that they
aim to change the epistemic value of a statement (Duval, 2007), such as a conjecture, hypothesis, or
theorem. The processes differ in how this change is obtained (e.g., through induction or deduction),

the grounds on which they are based, and the types of claims they are relevant to.
Hanna (2000) provides a list of the different functions of reasoning and proof in mathematics:
“e verification (concerned with the truth of a statement)

« explanation (providing insight into why it is true)

« systematisation (the organisation of various results into a deductive system of

axioms, major concepts and theorems)
« discovery (the discovery or invention of new results)

« communication (the transmission of mathematical knowledge)
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» construction of an empirical theory
« exploration of the meaning of a definition or the consequences of an assumption

« incorporation of a well-known fact into a new framework and thus viewing it from a

fresh perspective” (p. 8)

In an educational setting, some functions hold relevance, and according to Hanna (2000), reasoning

and proof should be at least explanatory to have educational significance.

2.4.1 Argumentation and proof
In KOM, arguments are considered chains of statements linked by inferences to justify mathematical

claims (Niss & Hgjgaard, 2019). Hence, argumentation takes place in different forms of reasoning.

An argument can be considered from a structural perspective. Toulmin (2003) poses a geometric
model (see Figure 6), rooted in jurisdiction and thus developed to investigate what constitutes a valid
argument from an epistemological and psychological stance. His model schematizes the basic
elements of an argument: a claim along with a qualifier, data, and a warrant. The claim is a statement
or conjecture, and its epistemic value is indicated by the qualifier (e.g., false, possible, likely, more
likely, or true), an expression of the probability of the claim. The qualifier is established based on the
data that support it (the evidence) and the warrant, which includes inferences connecting the data
to the claim. The role of the warrant is “to show that, taking this data as a starting point, the step to
the original claim or conclusion is an appropriate and legitimate one” (Toulmin, 2003, p. 91).
Extended elements are the backing, which can provide support for the warrant, and the rebuttal,

which can include limitations of the claim or counterarguments.

Data | » so| Qualifier | Claim
Since
| Unless
Warrant |
| Rebuttal

On account of
|
Backing

Figure 6 — Elements of Toulmin’s (2003) argumentation model
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Another structural perspective, this one rooted in logic, is that of Peirce (Cohen, 1933) who describes
three basic inference modes: deductive, inductive, and abductive. These are commonly discussed in

the literature on reasoning and proof.

In Toulmin’s argumentation model, (Jeannotte & Kieran, 2017). Deductive reasoning involves
arriving at "new information derived from a set of premises via a chain of deductive inferences"
(Harel & Weber, 2018, p. 1). The deductive structure is crucial in rigorous proofs, with proof being a
particular kind of argument derived from assumptions and propositions endorsed by the

mathematical community (Weber et al., 2014).

Induction infers a warrant from the data and a claim about the data (Jeannotte & Kieran, 2017). It
is related to using examples to provide validity, or generalizing based on examples, including
instances where a student relies on examples or mental images to verify the validity of an argument

(Manouchehri & Sriraman, 2018).

Abduction can take two forms. It either has a structure that infers data from the claim and the
warrant, or one that infers data and warrants from the claim (Eco, 1986; Jeannotte & Kieran, 2017;
Pedemonte & Reid, 2011). Abduction is related to the explorative processes of reasoning, e.g., to

discover a pattern or infer a rule, and it is often part of both the deductive and inductive processes.

2.4.2 Justification and justifying

While argumentation and proving have been extensively researched in MER, justification has
received less attention (A. J. Stylianides & Stylianides, 2022). In KOM, justification is a general term
for the argumentation for a mathematical claim. In this study, however, I follow a more narrow
understanding of the term, considering justification particular to a problem-solving process, e.g.,
when students are asked to explain and warrant the answer for a given problem. Bieda and Staples
(2020) define mathematical justification as “the process of supporting your mathematical claims
and choices when solving problems or explaining why your claim or answer makes sense” (p. 103).
It should be noted that some authors use the term reasoning correspondingly. For example, Lither

(2008) defines reasoning as

the line of thought adopted to produce assertions and reach conclusions in task
solving. It is not necessarily based on formal logic, thus not restricted to proof, and
may even be incorrect as long as there are some kinds of sensible (to the reasoner)

reasons backing it. (Lithner, 2008, p. 257).

However, as previously described, I use reasoning as a collective term for a range of forms of
reasoning. What is essens of justification is the context of problem solving, and that the epistemic

value is assigned by the reasoner rather than the general mathematics community. Justification

24



processes are not necessarily linear, as “students can take various paths in making sense of the claim,
revising their stance on the truth value of the claim, or settling on a statement that is acceptable to
their peers” (Lesseig & Lepak, 2022, p. 96). Early studies have elaborated on the social perspectives
that influence what a student might conceive as convincing. Yackel and Cobb (1996), Wood (1999),
and Wood et al. (2006) explored the relationship between explanation and justification,
investigating the nature of students’ responses, revealing sociomathematical norms guiding
mathematical activity in the classroom. Simon and Blume (1996) viewed justifications as the
responses students offered when asked to provide mathematical evidence, and they explored criteria
for acceptable justifications within the teacher community. Dreyfus (1999) distinguished between
descriptive and justificative modes of thinking, emphasizing the role of the activity in the classroom
community. Common to these studies is the emphasis on the classroom culture to determine what
constitutes a justification. From that perspective, what counts as a sufficient justification is cultivated
by the teacher and students in the classroom, and to a lesser extent, the general mathematics
community. This does not mean that the justification cannot rely on mathematical theory or lack
deductive steps. However, if that is the case, it is a condition cultivated in the classroom or by the
students participating in the process. Jeannotte and Kieran (2017) consider justifications to be
validating processes of narratives that “by searching for data, warrant, and backing, allow for

modifying the epistemic value of a narrative” (p. 12) and elaborate thus:

The elements supporting the process are constrained by meta-discursive rules within
a certain community. For example, the change from likely to true has to be based on
a deductive structure. On the other hand, in changing from likely to more likely, some
meta-rules constrain the process, but a deductive structure is not necessary

(Jeannotte & Kieran, 2017, p. 12).

Meta-discursive rules govern how we discuss and reflect on our own discourse (Sfard, 2008). It is
fundamental to determine the meta-discursive rules in a particular community if to infer the
epistemic value of a claim. This is not the approach taken in this study, however. It can be assumed
that in many lower secondary mathematics classrooms, deductive structured arguments are not (yet)
developed as a practice, and a deductive step cannot be a meta-discursive rule related to the
epistemic value true, as it would be in higher education. From the student’s perspective, obtaining
the epistemic value true is rather based on inferences from the convictions of the participating
students. G. J. Stylianides (2008) suggests two “non-proof” arguments. The first is empirical
justification, where the solver checks a proper subset of possible cases. The second is rationale,
meaning if an argument “does not make explicit reference to some key accepted truths that it uses
(in the context of a particular community where these truths can be considered as key), or if it uses

statements that do not belong to the set of accepted truths of a particular community” (G. J.
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Stylianides, 2008, p. 12). Empirical justification and rationales I consider likely to occur in
justification processes. Although some studies confront students’ reliance on empirical justification
as a limitation to be overcome (e.g., Duval, 2007; Harel & Sowder, 2007; G. J. Stylianides &
Stylianides, 2009), other studies highlight the significant role of examples in the justification
process. Studies such as Pedemonte and Buchbinder (2011), Zazkis et al. (2008), and Knuth et al.
(2019) demonstrate how testing specific examples enables students to form conjectures and explore
the boundaries of generalizations. Importantly, students’ empirical investigations have the potential
to unveil mathematical relationships and structures that foster a deeper comprehension of the
underlying concepts. Indeed, justification can promote understanding among engaged participants
(Staples et al., 2012). However, students may accept justifications without grasping underlying
mathematical concepts (Lesseig & Lepak, 2022). In this sense, Lithner’s (2008) distinction between
imitative and creative reasoning emphasizes the importance of students’ engagement with sense-
making in reasoning processes such as justification. Imitative reasoning is anchored in either
memorized solutions, the enactment of algorithms, or authorities such as technology, peers, or
teacher guidance. Creative reasoning involves novelty in the argument of the justifier in support of
the plausibility of a claim (the epistemic value, likely), and it is anchored in intrinsic mathematical

properties (elaborated in 6.1.1).

2.5 DIGITALTOOLS IN MER

Digital tools have garnered interest in MER for decades. One of the pioneers in this field was Papert
(1980), who advocated for the use of digital tools as a means of constructing knowledge and
encouraging critical thinking. This optimism toward the potential of digital tools in mathematics
education was also reflected in the first ICMI study on the topic (Churchhouse et al., 1986). However,
it has since been recognized that the educational value of digital tools is not inherent, but must be
promoted within the educational context (Drijvers et al., 2016), as the same digital tool can both

enhance and replace mathematical competency and capacities (Niss, 2016).

Digital tools can be utilized to delegate processes, such as calculations or drawing figures, that are
tedious, difficult, or prone to producing inaccurate results (Buchberger, 1990; Hoyles, 2018).
Outsourcing processes can free up students’ time to focus on other activities that develop conceptual
knowledge, such as investigating the results or the processes themselves (e.g., Gyongyosi et al., 2011;
Segal et al., 2016). However, outsourcing can also black box (Buchberger, 1990) the processes,
making them inaccessible for students to understand and causing conceptual misunderstandings
when interpreting results (Jankvist & Misfeldt, 2015). Therefore, the use of digital tools in
mathematics education should be evaluated based on their educational value so that it supports

students’ conceptual development (Artigue, 2002).
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GeoGebra combines geometric and algebraic features from CAS and DGE. CASs were originally
developed in the 1960s for scientific professions and later became commonly used in universities for
complex mathematical computations (Roanes-Lozano et al., 2003), thus disseminating into
mathematics education. The first DGEs were developed in the 1990s with the didactical purpose
(Roanes-Lozano et al., 2003) of teaching and learning Euclidian geometry and later, coordinate
geometry and measuring and calculating geometric objects (Oldknow, 2002). Consequently, the
syntax of DGE is more accessible for learners than CAS. CASs and DGEs have increasingly
incorporated features from one another, and some software has aimed at a fuller integration, such

as TI-Nspire and GeoGebra (Freiman, 2014; Sutherland & Rojano, 2014).

The potential of multi-representation is one of the features of DGE and CAS often highlighted in the
literature (Drijvers et al., 2010). Representations are instantaneously translated or treated, and a
vast number of examples can easily be generated due to dynamic features, such as dragging of objects
and sliders controlling variables and animations. Such interaction results in feedback in the form of
computation results or translations between representations (Bikner-Ahsbahs et al., 2023; Bokhove
& Drijvers, 2012; Olsson, 2018). The feedback allows students to explore, explain, or verify results
and conjecture about the underlying rules or patterns, explaining results or translations (Kaput,

1992; Kaput & Schorr, 2007; Moreno-Armella et al., 2008).

In DGE, this involves dynamic constructions of robust figures or measurements of geometric objects
for the exploration of relationships within the graphic representation of Euclidean geometry (e.g.,
Baccaglini-Frank, 2019; Hgjsted, 2021; Leung, 2008; Leung, 2014; Leung et al., 2013; Mariotti,
2012; Olivero & Robutti, 2007).

In CAS, the translation between representations is more commonly investigated, e.g., students’
exploration of functions and their graph (e.g., Artigue, 2002; Bach, 2022; Bloch, 2003; Granberg &
Olsson, 2015; Guin & Trouche, 1998; Trouche, 2003). The algebraic features of GeoGebra can also
be used to explore translation between registers and conjecture about symbols in an educational tool,
rather than a professional tool. Nevertheless, this has mainly been explored with respect to functions
(e.g., Bach, 2023; Binti Misrom et al., 2020; Granberg & Olsson, 2015) and rarely with a variable as

a general number.

According to my own review (Paper 1), the artifacts of GeoGebra’s algebra view, and how they can
aid in reasoning in relating to variables as general numbers, are not well understood. Few studies
have been conducted on this topic, such as those by Soldano and Arzarello (2017) and Tanguay et al.
(2013). They have shown that using a slider tool to assign numeric values to a variable can help
students make conjectures about algebraic relationships, such as proportions and ratios. The slider

allows students to visually test these conjectures. Moreover, Lagrange and Psycharis (2011) observed
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students solving LOGO tasks and found that when students can manipulate algebraic expressions,

they are more likely to make conjectures about the symbolism in algebraic relationships.

One of the phenomena discussed in relation to students’ use of digital tools for reasoning is their
reliance on empirical knowledge (Harel & Sowder, 2007) or phenomenological evidence (Baccaglini-
Frank, 2019). To counter this tendency, Laborde and Laborde (1995) advocated for designing tasks
for DGE that could only be solved using geometrical knowledge. The same argument can be applied
to algebra tasks in a DGAE. However, this approach does account for the epistemological gap
(Sabena et al., 2014). Teachers may expect a theoretical argument while students approach their
answers experimentally, trying to make sense of what they see and explore on the screen. Therefore,
another approach is to capitalize on students’ reliance on empirical knowledge. For instance, Olive
et al. (2010) argues that “by observing properties of invariance simultaneously with manipulation of

the object, there is potential to bridge the gap between experimental and theoretical mathematics"

(p. 150).

2.5.1 The interface of GeoGebra classic

GeoGebra offers a range of mathematical education tools and resources. The online version of
GeoGebra classic was used for this study (see Figure 7). Teachers or researchers can customize the
software environment by, e.g., creating restricted environments or designing templates and

resources, tailoring the software toward specific student groups and learning objectives.
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Figure 7 — GeoGebra’s classic interface: green frames indicate the toolbar, yellow frames indicate the
algebra view, and blue frames indicate the graphic view
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The interface is flexible and allows for initiating different views. Views can be enabled and disabled,
and various settings can be altered to change the appearance. For instance, the graphic view can be
displayed with or without a coordinate system. Additionally, the algebra view can report values,

definitions, and descriptions of created objects.

This study utilizes two views: the graphic view (blue frame, Figure 7) and the algebra view (yellow
frame, Figure 7). The algebra view has an input bar for commands to create objects, perform
computations, and take measurements. A complete list of available commands can be found at

https://wiki.geogebra.org. Once a command is input, the output is displayed in the algebra view,

while the objects created are represented in the graphic view. The graphic view provides a visual
representation of objects, which can be manipulated by dragging them across the screen, depending
on the construction constraints that determine their dynamic movement. The toolbar (green frame,
Figure 7) contains various menus with categorized tools that enable the interactive construction of

objects and measurements in the graphic view.

2.5.2 The representation of variable as a general number in GeoGebra

In GeoGebra, there are two ways in which variables as general numbers appear: implicitly or
explicitly (Gregersen, 2022). In this study, the explicit use of a variable is used, since the implicit use
can result in representational structures that are algebraically difficult to understand for the age
group (Jackiw, 2010; Mackrell, 2011). Explicit variables appear as slider tools that control and assign
a value to a variable. By moving a point on the slider, the numerical value changes accordingly. This
variable can be referenced in other objects. See and try an example here:

https: //www.geogebra.org/m/ybywwzha.

Implicit variables can be achieved in two ways. Dynamic objects can be constructed with geometric
tools or other objects can be referenced when constructing new objects. As a result, these objects are
dependent or co-vary. The variable hence exists by the construction rather than as an independent

symbolic representation. See and try an example here: https://www.geogebra.org/classic/urgqu3af.

2.6 THE INSTRUMENTAL APPROACH TO MATHEMATICS EDUCATION
Rabardel developed the Instrumental Approach (IA) during the 1990s and 2000s, drawing

inspiration from his PhD supervisor, Vergnaud’s (1998b) conceptualization of schemes and the
research field of cognitive ergonomics. The main topic of his research was cognition related to the

use of instruments. Fundamental principles of the IA are:

e the distinction between artifact and instrument
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e the concept of instrumental genesis with its two movements dialectically connected:
instrumentalization from the user to the artifact and instrumentation from the artifact to the
user

e and the conceptualization of instrumental genesis in terms of the elaboration or

appropriation of schemes. (Artigue, 2023, sec. 3.1)

The IA, also known as the Theory of Instrumental Genesis, was adapted for mathematics education
by French scholars Defouad (2000) and Trouche (1996). Their doctoral theses initiated the
Instrument Approach to Mathematics Education (IAME). Defouad’s work emphasized the
anthropological theory of didactics (ATD) by considering praxeology in institutions. He focused on
students’ use of instrumental techniques and material signs in human activities, as well as the
discourse used to explain and justify these techniques. Trouche’s thesis emphasized the cognitive
perspective of Vergnaud and focused on the evolution of schemes of instrumented action in the
transition from graphic to symbolic calculators. In this study, I follow Trouche’s position, which has
been developed and expanded in collaboration with colleagues, including Giun (Guin & Trouche,
1998), Drijvers (Drijvers et al., 2013; Trouche et al., 2013), Monaghan (Monaghan et al., 2016), and
Artigue (Artigue & Trouche, 2021). IAME has since disseminated into other theoretical traditions,
such as the theory of semiotic mediation (Bartolini & Mariotti, 2008) and activity theory (Bikner-
Ahsbahs et al., 2023).

IAME is a developmental theory that conceptualizes how a learner utilizes an artifact in activities
associated with specific situations (e.g., using a DGE to construct a robust rectangle or using CAS to
solve a differential equation). During the learning process, to effectively utilize the relevant
components of the artifact for a given situation or task (e.g., the right angle tool in a DGE or the
solve/de-solve functionality of a CAS), these components are transformed into an instrument for the
learner (Artigue & Trouche, 2021). The construct of an instrument is distinct from the artifact. An
artifact, whether material or non-material, is a product of human creation that carries cultural and
social significance (Drijvers et al., 2013). An instrument is a hybrid construct with components of
the artifact and cognitive components in terms of schemes (to be elaborated subsequently). The
construct instrument thus draws on the psychological tradition of considering tools and aids
functional extensions of the body and mind (Rabardel & Bourmaud, 2003). Developing an
instrument is not a trivial endeavor. Imagine learning to play the trumpet, drive a car, or use a new
piece of software. It takes time and effort to understand the mechanics and obtain fluency. This

process is called instrumental genesis.

The instrument serves as a mediator in human activities, providing meaning and facilitating the

interaction between individuals and their environment (Drijvers et al., 2013). Rabardel and
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Bourmaud (2003) assert: “It is not only the artifact that mediates: the instrument is at the heart of
mediated activity”. This distinction might seem insignificant, but it emphasizes that the mediated
activity has a cognitive component. Mediation can take various forms, including pragmatic and
epistemic. Pragmatic mediation happens when the student performs actions directed toward the
object, such as measuring the sum of the interior angles of a triangle in a DGE. Epistemic mediation
happens when the instrument is used as a means for the object to provide knowledge to the students.
For example, if the student measures angles, drags the triangle’s vertices, and realizes that the sum
is always 180°. This example shows both the cognitive and artifactual components of mediation. It
is made possible by the measuring tool in the DGE and its dynamic features, as well as the student’s

knowledge of how to perform the necessary actions and their conceptual understanding of angles.

In Drijvers et al. (2013), instrumental genesis is described as consisting of three dual relationships.
The first of these is between the subject and the artifact, as described above. The second is the

relationship between instrumentation and instrumentalization.

Instrumentation is the influence of a student’s actions on their own knowledge in the process of
learning to use an artifact and turning it into an instrument for a task. (Drijvers et al., 2013; Trouche,
2020). Thus, instrumentation is considered “not only as an action (by which someone acquires an
instrument) but also as the influence of this action on a subject’s activity and knowledge” (Trouche,

2020, p. 404). In addition, the artifact’s affordances and constraints influence the subject’s activity.

Instrumentalization is less described and researched (Trouche, 2020). It is directed from the subject
toward the tool, as the student influences or even disrupt the artifact in the process of instrumental
genesis. “Instrumentalization can thus lead to enrichment of an artifact, or to its impoverishment”

(Trouche, 2005, p. 148).

These two dualities are consistent with how Trouche has previously described instrumental genesis.
However, the third duality scheme-technique, has been more controversial. I will discuss the
controversy in the next section. This relationship particularly highlights Vergnaud’s influence on
IAME. Following Vergnaud (1997), schemes are defined as “the invariant organization of behavior
for a certain class of situations” (p. 12). As the subject learns to use specific components of the
artifact for classes of tasks or situations, specific techniques and underlying schemes that control
these techniques take shape, expand, and solidify. The thinking process is perceived as perceptual
and gestural activity that unfolds over time and adheres to a particular structure, but activity itself is
not invariant. Indeed, even though activity involves rules governing outward behavior and internal
cognitive processes, rules are adapted based on the specific context. Schemes consists of different

elements:
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e Goals, subgoals, and expectations

e Rules of action: They can be considered the generative component of schemes, responsible
for generating behavior based on situational variables.

e Operational invariants: They primarily involve concepts-in-action (to categorize and select
information) and theorems-in-action (to infer appropriate goals and rules from the available
and relevant information).

e Possibilities of inference: These possibilities are essential since inference and computation

are inherent in any activity (Vergnaud, 1998b, p. 229).

Drijvers et al. (2013) then consider the technique-scheme duality to be the relationship between
gesturing and thinking. However, the use of the term technique has been debated, and I will

contribute to this debate with my own position in the next section.

2.6.1 Techniques in the instrumental act

As the early development of IAME was influenced by French traditions, the term technique was
adopted from ATD but used and developed in relation to scheme. However, the adaptation of
technique, as described by Artigue (2023), has been heavily debated. The essence of the debate
concerns the theoretical reduction and the incompatibility between their background theories
(Mason & Waywood, 1996). The ATD analyzes cognition in mathematics as praxeology, which
consists of the practical set: a type of task and a technique (to solve such tasks), and of the logos set:
a technology (the terminology) and a theory (the reasoning). Together they are represented by the
quadruplet [T, 1, 0, 6] (Chevallard, 2019). Consequently, in ATD you cannot talk about a technique
without the context of the other three elements. As elaborated above, IAME considers cognition in
terms of schemes. Remember that a scheme is defined as specific to types of situations or types of
tasks. This part is consistent with ATD as the practical set. However, instead of the logos set, the

IAME operates with schemes. This is the quarrel.

In TAME, techniques are explained with reference to the ATD (e.g., Trouche, 2005) but also as a
particular organized set of gestures “distinguishing an elementary level of command constraints and
a more complex level of organization constraints [...] within students’ activity, between a level of
gesture and a level of technique” (Trouche, 2005, p. 147). Trouche (2005) relates techniques to
schemes and considers an instrumented technique to be a technique that integrates one or several

artifacts, which are guide and form an instrumented action scheme.
However, Artigue (2023) critiques this:

... thinking in terms of praxeologies means that techniques cannot be isolated from

the technological discourse that describes, explains and justifies them. In a sense,
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reducing techniques to gestures is akin to reducing schemes to their observable
characteristics without considering the essential component of schemes that the
operational invariants underlying the observed regularities are. Indeed, the many
contributions to the scheme/technique debate have made it clear that schemes and
techniques correspond to two different and complementary ways of approaching

instrumental issues, both insightful but irreducible to each other. (p.33)

Still, Drijvers et al. (2013) describe techniques as gestures and consider schemes and techniques
parts of instrumental genesis. Though acknowledging the theoretical reduction of adopting the term

techniques, they take a practical stance:

we see techniques as the observable part of the students’ work on solving a given type
of tasks (i.e., a set of organized gestures) and schemes as the cognitive foundations of
these techniques that are not directly observable, but can be inferred from the

regularities and patterns in students’ activities. (Drijvers et al., 2013, p. 27)

They also elaborate on techniques as carriers of both practical and theoretical knowledge, as is the
premise of ATD. In doing so, they acknowledge the analytical need for a construct that connects
students’ gestures, particularly those related to artifacts, to students’ cognition. This approach
disregards theoretical reductionism and emphasizes the need to conceptualize gestural activity
performed on the artifact within the instrumental act, which involves the hybrid entity instrument
(artifact + scheme). This distinction is important for separating activity that only involves schemes

from activity that incorporates the instrumental aspect.

In papers 3, 4 and 5, I use the term technique with reference to the scheme/technique duality
(Drijvers et al., 2013), which is an expression of the same “practical” need. To address the theoretical
reductionism, I do, however, find it necessary to reinterpret the term technique anchored in the
background theory of IAME, parting with IAME’s link to ATD. This requires considering the original
work on the Instrumental Approach by Rabardel and colleagues (e.g, Rabardel, 1995/2002;
Rabardel, 2001; Rabardel & Bourmaud, 2003) and approaching techniques through Vergnaud’s

definition of scheme.

In the following, I explore the terms used to describe gestural activity by Rabardel and colleagues
and relate these to the notion of scheme as defined by Vergnaud (1998b). Rabardel (1995/2002),
and later Rabardel and Bourmaud (2003), describe the organization of activity in the mobilization
and implementation of schemes as usage modalities or activity modalities of an artifact. When they
operationalize the notions in analysis, modalities are presented as steps (organization) in a series of

specific activities related to an artifact. Each step describes the goal and decisions of the subject, and

33



the objects of the activity. Changes in the usage modalities indicate the development of schemes.
Therefore, techniques are at least usage modalities of artifacts that require the mobilization and
implementation of an instrument (following the definition of instrumental genesis). However, as
Rabardel expresses it: “it is necessary to analyze and understand what these activities are from the
perspective of the users themselves” (1995, p. 31). Indeed, from an RC perspective, understanding
the student’s perspective in the development of schemes is of prominent concern. A more inclusive
approach would be to consider techniques as encompassing all gestures involved in student activity
when using a digital tool (such as hand movements during expressions, observing an artifact or
activity on objects mediated by the artifact, or articulation of imagined activity). This allows for a

richer description of students’ cognition than focusing solely on usage modalities.

Rabardel (1995) and Rabardel and Bourmaud (2003) also distinguish between two types of
utilization schemes and their related activities: usage schemes expressed through secondary
activities aimed at managing the artifact (such as selecting specific colors or changing the number of
displayed decimals), and instrumented action schemes, which involve primary activities oriented
toward the execution of specific tasks. As the primary activities are those that involve mathematical

concepts, I find it beneficial to limit techniques to primary activities.
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In summary, I consider techniques the primary perceptual and gestural activities that involve the
mobilization and implementation of instrumented action schemes. In summary, I consider
techniques as the primary perceptual and gestural activities that involve the mobilization and

implementation of instrumented action schemes. This is illustrated in Figure 8.
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Figure 8 - Illustration of instrumental genesis and instrumented action scheme placing techniques as
a primary activity

2.6.2 Artifacts and tools

In the TAME literature, a specific piece of software or device is most often referred to as the artifact,
e.g., a CAS with functionalities. Using different functionalities then means using part of the artifact
(Trouche, 2005). The notion tool applies when the artifact is used (Monaghan & Trouche, 2016). In
other instances, tools and functionalities in the software are described as artifacts, forming part of a

collection of artifacts (e.g., Drijvers et al., 2013; Leung, 2008a).

What exactly is the artefact in a given situation is not always clear: for example, in

the case of dynamic geometry software, it is a matter of granularity if one considers
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the software as one single artefact, or if one sees it as a collection of artefacts (Drijvers

et al., 2013, p. 26).

Therefore, clarifying how I use artifacts and tools is necessary. While I do consider GeoGebra an
artifact, it is one that structures different interrelated views (see Figure 7 and Figure 9), such as the
graphic view and algebra view. Each view embodies and organizes different domains or subdomains
of mathematics, each with its own syntax. I will refer to GeoGebra as a software organized in different
views with a collection of artifacts. Artifacts become tools when used, and they become elements of
an instrument through the process of instrumental genesis. Artifacts in DGAE create representations

of mathematical objects, and one could argue that even the representations are tools for solving types
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Figure 9 — Left: The algebra and graphic view. Right: The menu option showing the views of GeoGebra

of tasks. However, in this context, I will not consider representations artifacts. An artifact can be
described in terms of its functions. As an example of using the construct, the algebra view is used by
typing commands into its input field. I consider each of such commands an artifact. For example,
there is a command for creating a point, a function, a geometric object, yielding the divisors of a
value, and so on; each is an artifact. The slider artifact that creates and controls the value of a variable
comes along with functions such as dragging a point on the slider to change the variable’s value and

the animation function, which automates changing the value and setting the limits of the variable.

2.6.3 Classes of situations and a specific type of tasks

Schemes are only relevant for a specific class of situations or specific types of tasks (Trouche, 2005).
In this study, a type of task can be considered from the perspective of the two nodes in the
pentahedron (see section 2.2): the mathematical activity, in this case justification, or the

mathematical content, concerning variables in ordered pairs. I return to this in Chapter 6. The latter
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type is more typical in the literature. For example, in Trouche (2004) the type of task is to solve an

equation with two unknowns.

This chapter have described and discussed perspectives on theory and elaborated on the theorical
foundation of the study. Drawing on this, the following chapter present the research questions of the

study.
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3 RESEARCH QUESTIONS

The study’s theoretical and practical aim resulted in the formulation of three research questions
(presented below) based on the previously described and discussed theoretical perspectives. Each
research question is underpinned by specific assumptions or hypotheses, which I will present and

argue for here.

Because the project concerns the use of DGAE in relation to students’ exercise of mathematical RC,
it is relevant to create situations for students to exercise their RC and learn about something
mathematical. The mathematical topic in focus is variable as a generalized number in basic algebraic
expressions along with basic algebraic properties such as equality, infinity, limits, and structural
relationships (e.g., multiplicative and additive) that can be expressed when a variable is used in

simple algebraic expressions.

GeoGebra contains artifacts, such as the slider tool, that allow operations on variable expressions to
be converted into changes in graphic representations that appear as (virtual) real objects. My “naive”
hypothesis is that GeoGebra’s dynamic multi-representation of algebraic, numeric, and graphic
representation has the potential to support and encourage students to exercise their RC regarding
algebraic properties and relationships by relating those representations in justification processes.
However, for students to capitalize on those affordances, tasks must support such justification
processes in their interaction with GeoGebra. To explore how such tasks can be designed, the first

research question (RQ1) inquires:

In what ways can tasks be designed to encourage lower secondary students to exercise their
reasoning competency when using a dynamic geometry and algebra environments in the case

of justification focusing on variables as a general number?

To gain insight into students’ justification, in the context described above, as they work with the tasks

developed for RQ1, the second research question (RQ2) explores:

What are the relationships between lower secondary students’ scheme-technique duality
when solving tasks developed for RQ1 in a dynamic geometry and algebra environment and

their exercise of reasoning competency as justification?

By RQ2, I assume that differences in students’ scheme-technique duality when solving the given
tasks can be related to differences in students’ exercise of RC. Certainly, students exercise their RC
with different complexity, which is assessed by the three dimensions: the degree of coverage, the
radius of action, and the technical level(Niss & Hgjgaard, 2011, 2019). However, such an assessment

of students’ RC alone does not shed light on their engagement with the DGAE in the justification
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processes. Likewise, the IAME does not have notions that particularly relate to reasoning; how these
two theoretical perspectives can be linked to capture relationships will require theoretical
consideration and development. In RQ2, I hypothesize that IAME and RC are related. Such analysis
might serve as the opportunity to uncover links, where each theoretical approach has methods to
capture different aspects of students’ tools used in justification processes. (Niss & Jankvist, 2022).

Hence the third research questions (RQ3) address:

Which theoretical links can be established between reasoning competency and the
Instrumental approach to mathematics education from the theoretical developments of the
study?

The three research questions are interconnected and mutually influential, suggesting that outcomes
that pertain to one question may also be relevant to the others. Given the need to develop tasks
tailored to specific scenarios and to make substantive contributions to the research field both
empirically and theoretically, design research serves as the overarching methodological framework
for the project. To enhance the theoretical underpinnings, the study incorporates a networking

perspective into the theoretical discussions and reflections.

The next chapter accounts for design research and role of theory.
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4 EDUCATIONAL DESIGN RESEARCH

This chapter elaborate on the methodology of the project, which is educational design research (DR).
4.1 describe DR and its characteristics. 4.1.1 comment on theory development in DR, and finally,

4.1.2 discuss the quality of empirical research and DR.

4.1 EDUCATIONAL DESIGN RESEARCH

DR is referred to by different names, including ‘design studies’, ‘didactical design research’, ‘design
experiments’, ‘design-based research’, ‘design research’, and ‘design engineering’. DR combines
instructional design, which develops sequences for teaching and learning in an educational setting,
and educational research, which addresses teaching and learning processes aiming to understand
these processes and develop theory. Instructional design and educational research are combined into
an iterative cyclic process toward maturing both design and theory (Bakker, 2018; Cobb et al., 2003;
Gravemeijer & Prediger, 2019; McKenney & Reeves, 2014). It is the dual aim of DR that makes this
methodology particularly relevant for this study, as it allows for answering both RQ1 and RQ2 and

provides a foundation for RQ3.
Each notion implies differences in methods, but core characteristics are:

e aiming to develop both theory and practice through a design within realistic settings

e designing for the development of educational theory

e Dbeing interventionistic in nature, having both prospective and reflective components

e being cyclic, emerging from iterative conjecturing, testing, and revising

e developing theory that is transferrable to other contexts

e Dbeing pragmatically rooted (Bakker, 2018; Barab & Squire, 2004; Cobb et al., 2003;

Gravemeijer & Prediger, 2019)

However, DR can vary in many ways, e.g., in the applicability of the practical results, the scope of the
theoretical results, the intensity of collaboration with practitioners, the number of iterations, and the
theoretical anchoring and theoretical approaches in the study (Bakker, 2018; Gravemeijer &
Prediger, 2019). Particularly, the aim of a given study influences the emphasis on either theory

development or practical implications. Studies with a practical emphasis are primarily conducted to:

“e Solve a problem (e.g., increase the participation of women and other minorities in

engineering and science careers),

« Put knowledge to innovative use (e.g., use the affordances of smartphones to enable

mobile learning), and/or
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« Increase robustness and systematic nature of design practices (e.g., establish a set
of design principles for implementing inquiry-based learning in middle school

science).” (McKenney & Reeves, 2014, p. 133)
Studies with a theoretical emphasis are primarily conducted to:
“e Generate new knowledge (e.g., develop a theory of game-based learning),

« Generate different types of knowledge (e.g., enhance and extend knowledge related

to professional development for scaffolding strategies for math teachers), and/or

« Increase the ecological validity of research-based knowledge (e.g., increase the
likelihood that educational innovations will be used to transform educational

practice).” (McKenney & Reeves, 2014)

Topic-specific studies (Gravemeijer & Prediger, 2019) will often investigate pathways through a
given topic, which often produce hypothetical learning trajectories (Bakker, 2018). Some studies are
explorative, as little is known, and study the phenomena and opportunities that arise in the testing

of the design.

The present PhD study has a theoretical emphasis because the overarching aim is to develop
theoretical knowledge of students’ exercise of RC as they use digital environments which is addressed
by RQ2 and RQ3. The practical results are expressed in the answer to RQ1 by “putting knowledge to
innovative use”, as the study focus on students’ use of the algebra view but also “increase robustness
and systematic nature of design practices” in the development of some design principles. The cycle
of DR studies has specific phases that make up one iteration toward maturing the design and toward
developing coherency and detail in the theoretical elements and their implications for the theoretical

approaches in the fields. As illustrated in Figure 10, the phases are

1) analysis and exploration toward constructing and designing

2) testing the design to gather data in classrooms
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3) retrospective analyses by evaluation and reflection
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Figure 10 - Iterative phases of design research

Different authors “cut” or cluster these phases differently, as each phase relates to processes in the
other phases (e.g. Bakker, 2018; diSessa & Cobb, 2004; McKenney & Reeves, 2018). The phases are

cyclic, but each phase can be “revisited” in micro-cycles within a single iteration

McKenney and Reeves (2018) emphasize how the researcher should take both analytic (detective)
and creative (inventor) perspectives in all phases: “The detective is highly rational, seeking
knowledge that is grounded in evidence from the field and supported by scientific understanding ...

By contrast, the inventor is original, striving to innovate and embracing opportunity” (p. 89).

Initially, phase 1 entails activities such as identifying, formulating, and exploring an educational
problem that can best be answered through DR. The analyst seeks to define and understand the
problem by reviewing literature and receiving feedback from collaborates, and the inventor seeks
inspiration and ideas that uncover opportunities toward a solution of the problem (McKenney &
Reeves, 2018). In this phase, a preliminary or hypothetical theoretical lens is developed (Gravemeijer
& Prediger, 2019), guiding the emerging of an early design and informing the formulation of
hypothetical and humble design principles (see subsection 4.1.1). In the following iterations, these
elements will be refined and adjusted according to phase 3. Still, the creative perspective allows for
creativity in their application and serendipity (McKenney & Reeves, 2018). The design can concern
materials such as computer tools, tasks, activities, or learning environments but also principles of
how students or teachers are expected to act or communicate to obtain set goals (Bakker, 2018).
Designing encompasses the exploration and mapping of solutions, and construction encompasses
the creation and development of prototypes (McKenney & Reeves, 2018). Phase 1 should consider
students’ prior knowledge and appropriate learning goals, as well as the teaching-learning strategy

(design) that can assist students toward this goal (Bakker, 2018).
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The purpose of phase 2 is to obtain data that provide information to improve the envisioned design,
allowing for testing and revising conjectures (Cobb et al., 2009). The preliminary lens frames the
inquiry so that appropriate data is collected and follows appropriate methods. The researcher is often
deeply involved in the execution of the intervention in collaboration with the practitioners. This both
presents great opportunities to discover challenges and potentials of the design that can spur critical
reflection, but also a methodological issue as the involvement influences the results (McKenney &

Reeves, 2018).

In phase 3, the data are analyzed, and the design is evaluated toward refining theoretical
assumptions and design principles (Cobb et al., 2003; Prediger, 2019). It may involve exploring
phenomena that the intervention is known to engender (McKenney & Reeves, 2018). Collins et al.
(2004) argue, “it is important to identify the critical elements of the design and how they fit together.
In order to evaluate any implementation, one needs to analyze each particular case in terms of these
key elements and their interactions” (p. 34). This may involve considering the success of both the
implementation and its results (Bakker, 2018). Ejersbo et al. (2008) remark that ideally, the
development of design and the development of theory run simultaneously, but that this ideal can be
difficult to practice. Typically conjectures evolve during and after teaching experiments, leading to

loops between designing and conjecturing (Confrey & Lachance, 2000).

4.1.1 Theory in design research
Different types of theory elements have different functions in DR, and some are developed in turn

during a DR study.

Categorial theory elements provide a language with logically structured descriptive concepts and
are used to understand and distinguish phenomena and relations (Prediger, 2019). They have
functions similar to a background theory (subsection 2.1.2) as it “is decisive for all further theory
elements, as they provide the language to describe, set aims, and explain or predict in propositional
theory elements” (Prediger, 2019, p. 9). In the present study, the theoretical framework described in
Chapter 3, the KOM framework along with the IAME, has elements that provide such language, e.g.,
that mathematical mastery is understood in terms of mathematical competence, constituting a set

of logically structured descriptive concepts, and that tool use is a genesis of human and artifact.

This also reflects in the normative theory elements, which state and justify aims and principles such
as learning goals or process qualities within a given context and elaborate on their foundations
(Prediger, 2019). In this PhD project, the normative element provided by the KOM framework is
anchored in the proposition that mathematical mastery is understood as mathematical competency

(Niss & Hgjgaard, 2019; Niss & Jankvist, 2022) and expressed in the goal of students to exercise
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their RC. Other normative elements have also been included to provide an informed foundation for

the design and construction of tasks. These elements are explained in Chapter 6.

Descriptive theory elements serve to describe the quality and occurrence of certain phenomena and
relationships. These can be features, hierarchies and frequencies of different categories. Identifying

and refining descriptions of phenomena is a typical step in DR (Prediger, 2019).

Explanatory theory elements explain certain phenomena by pointing to cause and effect between
phenomena or structures. Categorical and descriptive components are needed to develop
explanatory elements, though in empirical research they are often co-developed (Prediger, 2019). If

a relationship between descriptive elements can be derived, it increases the explanatory power.

Predictive theory elements justify certain solutions/actions toward a given aim or problem, or they
predict outcomes of action, design elements, or structural elements. In DR, predictive theory
elements are traditionally developed as design principles. Van den Akker (1999) propose that design

principles follow this structure:

If you want to design intervention X [for the purpose/function Y in context Z], then
you are best advised to give that intervention the characteristics A, B, and C [...], and

to do that via procedures K, L, and M [...], because of arguments P, Q, and R. (p. 9)

Akker’s formulation combines the how and why underpinning the dual aim of DR. The arguments
in support of the design characteristics and procedures can both be empirical and theoretical
(Bakker, 2018).

To emphasize the hypothetical nature of early design principles, I label them humble design
heuristics (HDH), following Prediger (2019). The developing theoretical lens guides the early HDH
hypotheses, which are developed into principles as they mature in the retrospective analysis of phase
3. The design principles are continuously revisited throughout the kappa, to explicate how different

processes have provided new insights to progress the principles.

4.1.2 Quality in research and design research

Schoenfeld (2007) has established quality criteria for validity and reliability within empirical
research, which also extend to DR (e.g., Hgjsted, 2021; Jankvist, 2009). I will discuss these criteria
regarding the project in the final discussion. Schoenfeld (2007) argues that research must be
examined based on three dimensions: credibility, generalizability, and importance. Ensuring quality
in DR involves such key aspects, including trustworthiness, descriptive and explanatory power, and
the generalizability and transferability of results. This section explores these dimensions to provide

a comprehensive understanding of quality in DR.
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In DR, trustworthiness includes both validity and reliability. Bakker and van Eerde (2015)
underscore the significance of internal and external validity in establishing the credibility of research
findings. Internal validity aligns with Schoenfeld (2007) descriptions and pertains to the quality of
the data and the soundness of the reasoning leading to conclusions. To fortify internal validity,
researchers often employ data triangulation in retrospective analysis, incorporating diverse data
sources such as transcripts, videos, screencasts, and written products. This multiplicity of data

sources allows for a robust examination of the research findings.

Reliability in DR can be challenging due to the complexity of naturalistic settings where
interventions are implemented (Collins et al., 2004). The numerous dependent and independent
variables in such environments can affect the consistency of results. Despite these challenges,
maintaining rigorous methodological standards and ensuring transparency in data collection and
analysis processes can bolster reliability. Schoenfeld (2007) notes that findings with less internal
validity may only serve as proof of existence, underscoring the need for stringent validity checks in
DR studies.

Documentation and description of the DR processes ensure rigor, specificity, and replicability.
Schoenfeld (2007) adds that the description should concern only essential aspects. Descriptive and
explanatory power in DR refers to how well the research can describe and explain phenomena within
the study context (Prediger, 2019). Predictive power in DR involves the ability to forecast outcomes
based on the design principles developed during the research. These principles, while predictive,
require rigorous testing and validation to ensure their applicability across different contexts.
Schoenfeld (2007) asserts that theoretical claims need to be testable and refutable, enhancing their

potential for refinement and validation.

Generalizability in DR pertains to the extent to which research findings can be applied beyond the
original study context. Schoenfeld (2007) outlines four types of generalizability: claimed, implied,
potential, and warranted. Claimed generalizability is the set of conditions explicitly stated by the
researchers as applicable, while implied generalizability is suggested indirectly. Potential
generalizability refers to contexts where the findings might reasonably apply and warranted
generalizability is substantiated by trustworthy evidence. In the context of DR, generality is thought
of as the transferability of results (Bakker, 2018). These theory elements include categorical,
normative, descriptive, explanatory, and predictive elements, each serving different functions within
the research framework (Prediger, 2019). Schoenfeld (2007) emphasizes the importance of the
relevance and significance of research results for both theory and practice. The importance of the
results, therefore, lies in their ability to advance the field and inform future research and practice in

mathematics education.
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5 OVERVIEW OF THE EXECUTION OF THE STUDY

This chapter provides context for answering the research questions (1-3). 5.1. present an overview
of the phases of the study, and position the study in the landscape of DR. 5.2 account for the data

collection. 5.3 summarize the papers included in the kappa.

5.1 EXECUTION OF THE STUDY
The project has followed the iterative structure of DR (see chapter 4), emphasizing linking KOM with

IAME. As Figure 11 illustrates, the retrospective analysis of the DR serves as a foundation for the
networking of the two frameworks KOM and IAME, which again influence the redesign and
construction of tasks. The development of the task design is described concretely and thoroughly in
Chapter 6.
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Iteration 1: Based on an initial
literature review, the
preparation phase explored
possibilities for students to use
artifacts of the algebra view for
justification through classroom
experiments of seven
explorative tasks. Networking
efforts explored mediation
processes as expressions of RC

but pointed to “missing links”

Iteration 2:

The design and preparation
phase led to the emergence of
a “microworld” designed
around the idea of “variable
points” and the construction of
a sequence of tasks. The
retrospective analysis
identified tasks with
possibilities for students

exercise of. Networking efforts

Iteration 3:

The task sequence was
redesigned and tested, leading
to potential developments in
task design. Common
difficulties among students
exercising RC and using
algebra were revealed.
Networking efforts deepened
connections to Vergnaud’s

scheme concepts and

between KOM and IAME. to link KOM and IAME considered three dimensions
produced an analytical model | of RC relations..
of student justification
processes using GeoGebra.
NETWORKING

PHASE 3 - RETROSPECTIVE ANALYSIS
BY EVALUATION AND REFLECTION

Figure 11 - Illustration of the research process as an interaction between DR and NT

5.1.1 Characterizing the study within design research

The processes of a DR study are highly influenced by the aim of the study and its emphasis on the

practical or theoretical perspective. As already indicated, this project emphasizes the theoretical
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perspective. This does not mean that the practical perspective is devaluated; Indeed, the theoretical

developments obtained in the study rely on the quality of the empirical evidence.

The theoretical aim of this study is to enhance and extend the knowledge of students’ RC and use of
digital tools. This aim also emphasizes why networking of theories are relevant. As the KOM
framework is a medium-level framework (this is argued in section 6.5), it does not capture the fine-
grained processes of interplay between DGAE and students’ reasoning processes. To gain insight into
this interplay, the theory development must therefore consider the KOM framework and draw on
the theories of MER with methods and concepts to describe the fine-grained processes. The

theoretical development is hence anchored in a practical perspective.

Often a DR study is topic-specific (Gravemeijer & Prediger, 2019). However, it is not the case for this
study, as it does not aim to teach students specific mathematical content by creating optimal
pathways, such as learning trajectories. Rather the aim is to achieve insight for theory development
in cases where students exercise their RC while they use a DGAE. For students to exercise any
competency, they must be given a mathematical situation that concern something mathematical.
Moreover, this must be chosen with particular care toward the target group. Consequently, the
practical perspective is to encourage students to exercise their RC with artifacts in GeoGebra’s
algebra view by considering how to capitalize on the affordances of GeoGebra’s algebra view. In
addition, to increase the robustness and systematic nature of the design in terms of design principles
(Van den Akker, 1999) to be able to develop different types of knowledge, e.g., descriptive,

explanatory, and predictive theory elements (Prediger, 2019).

5.2 CLASSROOM EXPERIMENTS AND DATA COLLECTION

Table 1 shows an overview of classroom experiments and the data collection. The two participating
schools A and B are public schools. School A is located in a suburb of Copenhagen, and school B is
in a suburb of Aarhus. The classroom experiments were primarily conducted in the 7 grade. In the
pilot of iteration 1, two PhD fellows also participated. Note also that iteration 3 diverges in its
organization due to covid-related issues and includes an 8t grade. I will account for those in this

section too.

The classroom experiments were conducted in collaboration with the mathematics teachers of the
participating classes, who also assisted with obtaining consent for student participation and
informing parents. Before the classroom experiments, I met with the mathematics teacher of the
given class to organize the sessions and adjust the tasks. This meeting also prepared both the teacher
and myself for guiding and supporting the students, e.g., discussing how to give hints without

providing answers and how to support students in clearly accounting for their thinking and
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justifications. After each classroom experiment session, I also met with the teachers to evaluate and,
if necessary, make minor adjustments before the following test. These were primarily specific

formulations that diverted from the discourse of the given mathematics classroom.

In the experiment, the students worked together in pairs with one laptop or Chromebook to make
students voice their thoughts and arguments and to experience a need to justify their solutions or
solutions strategies to a peer. The student’s work was documented with video and audio recording
software using OBS studio on laptops and WeVideo on Chromebooks, capturing the computer
screen, voices, and the students’ upper bodies. In addition, in collaboration with the teachers, two
focus pairs from each class were selected to be recorded by a stationary camera capturing the

computer screen and their hand gestures in front of it.

The students accessed the GeoGebra worksheets for given tasks through GeoGebra groups (now
being replaced by GeoGebra classroom). This allowed me to access the final state of the student’s
work in the GeoGebra group. In class a, the tasks were also posed along with an input field for written
answers. In the remainder experiments the tasks were given in Microsoft Word documents for the

and only the GeoGebra worksheets were accessed through GeoGebra groups.
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Table 1 - Overview of data collection

Grade When Where Duration Classes and | Teachers
(students)
- 7th grade August 2019 | School A 2 lessons of | Class c(23) Teacher 2
8 45 minutes
"E PhD September Aarhus 1 hour (2) none
é students 2019 University
g 7th grade October/ School A 2 x 2 lessons | Class a, (21/5) | Teacher 1
.% November of 45 minutes | Class b (17) Teacher 1
E; 2019 Class c (23) Teacher 2
= 7th grade June 2021 School B 2 lessons of | Classx (4) None
45 minutes
. 2 x 2 lessons | Classy (25) Teacher 3 +
g of 45 minutes Substitute
.:E; 2 lessons of | Classx (4) none
= 45 minutes
8th grade June 2021 School A 2 lessons of | Class c(23) Teacher 2
45 minutes

In iteration 1, seven tasks were tested in one classroom, which also tested the screencast software
and the setup of video cameras. Some tasks showing promise of further development in the
classroom experiments were also tested on two PhD peers to get a reference in the form of expert

answers to the tasks. I took on the role of an interviewer as they solved the tasks.

In iteration 2, not all students agreed to be video recorded. This was particularly an issue in class A,
where only five students agreed to be recorded. This resulted in two focus groups and one group that
did not record their face and upper body, but only screen and voices. However, all students in the
class worked with the tasks, and the teachers and I discussed our impressions of watching and talking
with the students, as they solved the tasks, in our evaluation of the sessions. Practically, this means

that results from class A were used as a pilot.

Iteration 3 was, to some extent, influenced by covid restrictions. Once the students were fully back
in school and schools were open to visitors, the summer holiday was approaching. The experiments
had to be adjusted to what was possible before the holiday and the restrictions still enforced. School
B had two 7th grade classes, Y and X. Two focus pairs from class X were used as a pilot to decide on

particular developments of the task and test the recording software WeVideo. Class Y was to try the
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full task sequence. The mathematics teacher of class Y was put in isolation throughout the period of
the classroom experiments due to a positive covid test, and a substitute participated in class.
Consequently, the students had less support with technical issues related to recording, the use of
GeoGebra, and task completion. This affected the quality of the collected data, so I organized a focus
group session with two pairs of students from class X. I also engaged class C from school A (now in
8t grade) to solve the developed task sequence. Their mathematics teacher conducted this

experiment after careful instruction from me.

5.2.1 Publications related to the study

The writing of review papers has been ongoing since in the early stages of the study and has
continually developed and shaped the study throughout all three iterations. Besides the papers
presented in the kappa, other conference papers and publications have been produced; some in
collaboration with colleagues. Table 3 presents an overview of how these productions fall within the

three iterations.

Table 2 - Overview of publications associated with each cycle

Focus Publication
Review Providing groundwork for existing knowledge on the | Pedersen et al. (2021)
studies use of tools in the algebra window of GeoGebra for | Paper 6: Bach et al. (2021)

reasoning processes, networking of theories, and | Paper 1: Gregersen (2022)
representation competency. The reviews have been

initiated in iteration 1 but have been ongoing until

publication.
Iteration 1 Exploring mediation processes Gregersen (2020)
Iteration 2 Exploring IAME toward -capturing justification | Paper 2: Gregersen and

processes and other potential frameworks for | Baccaglini-Frank (2020)
reasoning. This leads to the development of an | Paper 3: Gregersen and
analytical model to capture justification processes in | Baccaglini-Frank (2022)
students’ use of a DGEA, also exploring the potentials
of the algebra view and a definition of instrumented

justification.

Iteration 3 Evaluation of the developments implemented in the | Paper 4: Gregersen (In review)
tasks sequence by comparing students’ exercise of RC | Paper 5: Gregersen (2024)

and evaluation of specific types of tasks and their
potentials related to using the algebra view. Also, liking
IAME to KOM through students’ use of techniques in

their instrumented justification
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5.3 SYNTHESIS AND RESULTS FROM PAPERS IN THE KAPPA

In this section, I summarize the papers of the kappa and describe how they relate to and build on

one another.

5.3.1 Paper1- How about that algebra view in GeoGebra? A review on how task design
may support algebraic reasoning in lower secondary school

This review paper investigates the potential of GeoGebra’s algebra view for task design concerning

lower secondary school students’ RC when working with variables as a generalized number. Despite

an extensive search in the existing literature, only five conference papers on this topic were found,

indicating a lack of research in this area. The research on the use of DGE in mathematics teaching

and learning has mostly focused on Euclidean geometry and simple and complex functions.

The paper discusses three empirical studies and two theoretical papers that explore either the explicit
or implicit use of variables. The results suggest that GeoGebra’s integration of geometry and algebra
can pose didactical issues. The analytical algebra in the algebra view lies beyond the scope of lower
secondary school mathematics (ages 13-15), and the construction of geometrical objects in the
graphic view, which produces implicit variables, can result in discrepancies in the representations in

GeoGebra (Jackiw, 2010; Mackrell, 2011).

However, with the explicit use of variables (Soldano & Arzarello, 2017; Tanguay et al., 2013) and by
providing students with the possibility to transform algebraic expressions (Lagrange & Psycharis,
2011), it is possible to direct students’ reasoning toward algebraic expressions. In this context, the
use of sliders can validate or refute conjectures about the relations between numeric values and
geometric relationships (Soldano & Arzarello, 2017; Tanguay et al., 2013). The slider tool provides a
link between graphic representations, algebraic representations, and numeric values, allowing for a

more comprehensive understanding of mathematical concepts (Mackrell, 2011).

The paper concludes that, while there is little research on functionalities in GeoGebra’s algebra view
for working with variables as a general number, using sliders for explicit variables can activate lower
secondary students’ mathematical RC. Further exploration of typing expressions with variables in

the context of GeoGebra is also recommended.

5.3.2 Collective introduction of papers 2, 3, 4 and 5

Together, papers 2, 3, and 5 demonstrate the evolution of theoretical developments aimed at
bridging the gap between the KOM framework and IAME to capture students’ justification processes
when utilizing tools, while paper 4 focuses on task design for RC. They all rest on the results of the

review, and with different perspectives, they add to our understanding of students’ use of artifacts in
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the algebra view in the context of reasoning about variables as a generalized number and properties

of the variable.

In paper 2, a conference paper, the initial attempt to connect the two frameworks is introduced by
interpreting the scheme-technique duality (Drijvers et al., 2013) through elements of Toulmin’s
(2003) model, resulting in the creation of the first proposal of an analytical tool. This tool is further
elaborated with regard to the concept of justificational mediation (Misfeldt & Jankvist, 2019), a
distinct type of mediation in reasoning processes. However, the intricate process that emerges from
the analytical tool, governed by the goal of changing the epistemic value of claims, leads to the
abandonment of the notion. In paper 3, the analytical tool is further refined and used to define
instrumented justification to describe the process of students’ justification processes when using an
artifact. The analysis concerns a case where a pair of students solve a task designed within the study,
the “equal points” task. Some of the findings concern the potentials and challenges of the task. These
are further addressed in paper 4, which also describes how the task is further developed. Paper 4
draw on the definition of instrumented justification processes, but the analytical focus evolves
around the goal of student tool use, and the potentials and challenges of the “equal points” task for
students’ exercise of RC. In paper 5, the analytical tool is again utilized for analysis, accentuating the
scheme of the scheme-technique duality through the analysis of the scheme’s components
(Vergnaud, 1998b), elaborating on how students’ conceptual knowledge are an integrated

component of their instrumented justification processes.

5.3.3 Paper 2 - Developing an analytical tool of the processes of justificational
mediation
Paper 2 explores justificational mediation (JM) in the justification processes of a pair of early
secondary students using GeoGebra. JM is introduced in the context of computer algebra system
(CAS) assisted proofs in textbooks (Misfeldt & Jankvist, 2019). This paper, however, approaches JM
in the context of justification processes. The paper aims to expand the understanding of JM by
combining Toulmin’s (2003) model with the Instrumental Approach (IA) (Rabardel & Bourmaud,
2003) to analyze the process. It emphasizes that JM has the objective of changing the status of a

mathematical claim, e.g., from being probable or likely to being perceived as true or false.

The paper proposes reinterpreting Toulmin’s model based on the generative and epistemic aspects
of schemes (Vergnaud, 2009), a framework for analyzing arguments, to unravel the processes
surrounding JM. Using Toulmin’s (2003) model amplifies the importance of the qualifier as an

indication of the change in the status of a claim, and thus serves as a structure for analyzing JM.

The reinterpreted model of Toulmin is operationalized in the analysis of the justification processes

of two 7th grade students, assigned with a task in which they had to predict the movement of two
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variable points, A = (1,s) and B = (s,1), in GeoGebra’s coordinate plane. The examination of the
students’ informal argumentation, within the digital environment of GeoGebra, dissect the structural
components of the JM process in the identification of key structural elements. Specifically, the
students generate data as evidence and facts that support their mathematical claims. Moreover, the
analysis highlights the critical role of warrants in the students’ argumentation, pointing to the
inference rules utilized by the students to establish a connection between the generated data and the

initial claim.

5.3.4 Paper 3 — Lower Secondary Students’ RC in a Digital Environment: The Case of
Instrumented Justification
The paper addresses the aspect of justification concerning students’ RC within the broader context
of the KOM framework, and its implications in a dynamic geometry environment, as processes of
instrumented justification. The study highlights the significance of GeoGebra’s algebra view in
providing symbolic representations alongside graphic representations. However, the potential of
dynamic geometry and algebra environments for lower secondary school students remains relatively
unexplored. Building on paper 2, the paper presents a revised analytical tool, reinterpreting elements
of Toulmin’s (2003) model from the perspective of IAME’s scheme-technique duality. The aim is to
provide insights into the relationship between students’ use of a digital environment and their

justification processes, shedding light on their RC.

The tool is utilized in analyzing excerpts from two students’ efforts at solving a task, where the
algebra view’s input field is used to construct and transform variable points controlled by a slider.
The task given is the “equal points” task concerning the preconstructed points A = (1, s) and B = (s,1).
Students are asked to construct a point C, dependent on s, so that C and A move on parallel

trajectories. Then they are asked: “Can C = B? If so, when?”.

Excerpts of the students’ justification sub-processes are analyzed, and it is described how the
students argued for two opposing claims. The changes in the qualifiers of these claims were analyzed
across three justification sub-processes, providing a detailed examination of the instrumented
techniques, data, and warrants that the students used to generate and interpret evidence for their
claims. The students’ use of certain techniques, such as editing the coordinates of points and
observing animations, provided insights into their interpretation of data as evidence for their claims,

and the warrants they relied on during the justification process.

The use of animations, perceptions of point movement, and the distinction between “colliding
points” and “intersecting lines” are also discussed. The discussion relate to the student’s
interpretation of data as evidence and their gradual recognition of key mathematical concepts toward

their evolving understanding of properties and structures inherent in the variable points. The use of
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phenomenological warrants, such as “the speed of animated points influences when points can be
equal” and “the positions and movements of a point are influenced by changing the coefficient of the
variable in the coordinate set”, were significant in the students’ justification process. The task caused
tension between students’ interpretations of variables as a general number and the need for a
generalized conception, particularly in understanding the dynamism and temporality of

mathematical objects.

The findings lead to the proposal of a definition of instrumented justification processes:
Instrumented justification is a process through which a student modifies the qualifier of one (or
more related) claim(s) using techniques in a digital environment to generate and search for data
and warrants constituting evidence for such claim(s). The theoretical tool for analyzing the IJ
processes in DGAFE’s like GeoGebra contributes to strengthening the knowledge of students’ RC in a
digital environment, shedding light on the intricate relationship between students’ use of digital tools

and their justification processes.

5.3.5 Paper 4 - Lower secondary students’ exercise of RC: Potentials and challenges
of GeoGebra’s algebra view

Paper 4 dives deeper into the challenges, outlined in paper 3, concerning the “equal points” task. It

explores the challenges and potentials of the task for students’ exercise of RC and explains the

development and rationale behind its revisions.

The task revision addresses several issues. Firstly, inherent in the task was a prerequisite of viewing
variable points as a set of points that can be changed, hindering students’ engagement. Secondly,
while slider animation offered phenomenological impressions of movement speed, students
required guidance to utilize this functionality. Thirdly, the trace functionality in conjunction with
changing the coefficient had the potential for phenomenological impressions in terms of the length
of the trajectory. In addition the intersections of traces indicate the coordinate position when points
are equal. Fourthly, students needed assistance in manipulating expressions with variables in
coordinates. Finally, tasks involving parallel moving points diverted students from geometric

property justifications.

The revised task provides context for examining the potentials and challenges for lower secondary
students’ exercise of RC toward justifying algebraic properties of variable points. Based on two
different class experiments, students’ argumentations are compared between the first and the
revised tasks. The students’ work is analyzed from the perspective of KOM (Niss & Hgjgaard, 2019),
and students’ tool use of GeoGebra’s algebra view is analyzed from the standpoint of the IAME

(Artigue & Trouche, 2021; Drijvers et al., 2013).
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The findings show that the integration of graphic and algebraic representations through sliders in
GeoGebra’s algebra view holds potential for enhancing students’ RC. However, few students
successfully related observations from the graphic view to algebraic expressions. Some based their
justifications on phenomenological impressions, serving as initial steps of reasoning within the
algebraic domain. However, students’ struggles to grasp core concepts hindered progress, amplifying
the complexity introduced by the algebraic view. Some students who struggle with instrumentalizing
relevant techniques in the algebra view may relate to their symbol and formalism competency. Paired
with a lack of instrumentation of the graphic view, such students are generally challenged in their

exercise of RC.

Finally, the problem-solving strategy that most students implemented was to pick a technique and
stick to it. This reluctance to explore other techniques was a challenge for students’
instrumentalization of other techniques in the algebra view for both problem-solving and

justification.

5.3.6 Paper 5 - Analysing Instrumented Justification: Unveiling Student’s Tool Use
and Conceptual Understanding in the Prediction and Justification of Dynamic
Behaviours

This paper builds on the theoretical framing of papers 2 and 3. Within the context of predicting

dynamic behaviors of variable points, paper 5 aims to understand the interplay between students’

RC, use of DGAE, and their conceptual knowledge.

A pair of students’ prediction and justification of the dynamic behavior of variable points A = (1, s)
and B = (s, 1) in GeoGebra are subjected to analysis, applying the analytical tool for 1J developed in
paper 2 and 3. Their process is further analyzed with respect to the conceptual aspects of the scheme-
technique duality from IAME (Artigue & Trouche, 2021; Drijvers et al., 2013; Trouche, 2003) in IJ
processes. This is done by considering the components of scheme as defined by Vergnaud (1998b),
which concern students’ personal theorems about concepts, their rules-of-action, and the

possibilities for inference toward obtaining goals.

The analysis explores the interplay between data production, interpretation, and progression in
terms of techniques. The analysis of warrants provides insights into the progression of students’
conceptual understanding as a result of inferences between theorems about concepts, which co-
evolve with the progression of techniques. In addition, the progression of instrumental genesis is
driven by students experiencing the inefficiency of both rules-of-action and the constraints of the
artifact, pertaining to the goal of changing the epistemic status of a claim, ultimately advancing their

instrumental genesis. The findings suggest that predicting dynamic behavior can enhance
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knowledge-based justification, and the progression of technique is driven by students’ experience of

the inefficiency of techniques and artifacts related to the goal of justification.

The paper also highlights the value of the prediction task, particularly in revealing properties of the
variable and challenging students’ phenomenological impressions of dynamic behavior. The results
emphasize the potential for such tasks to develop a structural conception of the variable and
challenge students to move toward theoretically grounded justification. Additionally, the paper
provides insights into the progression of students’ conceptual understanding and tool use in the
context of mathematical RC, instrumental genesis, and inferences drawn between theorems-in-

action.

5.3.7 Paper 6 - On the notion of “background and foreground” in networking of
theories

Paper 6 stands out from the rest as it relates specifically to the perspective of networking of theories.

The paper is a product of the literature review of the co-authors and me. This review was made to

identify and understand the research practices and notions of networking of theories. The notion

introduced in this paper will be used in chapter 8.

The paper explores the crucial concept of ‘background and foreground’ theories, which play a pivotal
role in the networking of theories within the context of mathematics education research. Through a
hermeneutic literature review, we analyze how the notions of foreground and background theories
are utilized in the literature on networking theories. We support our analysis with two cases that
illustrate the relative and absolute distinctions of these terms, providing concrete examples for our
discussion. The absolute perspective considers foreground and background theories distinct and
fixed categories, as theories that stem from inside or outside mathematics education research, with
clear delineations between them. In contrast, the relative perspective views foreground and
background theories as more fluid and context-dependent, allowing for their roles to vary depending
on the specific research context or situation. The study highlights the coexistence of both relative
and absolute distinctions in the literature and discusses the implications of each perspective. While
the relative distinction can cause unnecessary confusion in terminology, it also offers a nuanced
understanding. Based on these findings, we propose a novel concept, ‘framing theories’, which we
believe can effectively address the nuances of background theories within and outside mathematics

education research.
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6 THE DESIGN AND CONSTRUCTION OF TASKS

In this chapter, I address RQ1:

In what ways can tasks be designed to encourage lower secondary students to
exercise their reasoning competency when using a dynamic geometry and algebra

environments in the case of justification focusing on variables as a general number?

This chapter emphasizes the study’s design process. It contributes design principles that are justified
through theoretical perspectives used in the design and construction of tasks and the retrospective
analyses of each iteration. I first introduce and provide rationales for the HDH (Prediger, 2019) and
their development into design principles (Bakker, 2018). The design of learning environments and
the construction of tasks require both an analytical and a design perspective (McKenney & Reeves,
2018). In section 6.1, I describe the analytical perspective that underpins the complete design
process. As I first present the analytical perspective, it may appear to be a priori analysis. In reality,
the analytical perspective has formed alongside design processes and classroom experiments but is
described and argued for in separate sections to convey a clear picture. The theoretical development

that intertwined with the design processes is described and discussed in Chapters 7 and 8.

Following, I report on the design processes throughout the three iterations by describing impactful
strides of the design and task construction processes and the development of design principles.
Section 6.2 explicates the initial explorative design process in iteration 1. Based on the explorative
processes, a microworld of variable points and related tasks is developed in iteration 2, which is
described in section 6.3. Progression in iteration 3 is elaborated in section 6.4. In each iteration, the
retrospective analyses summarize and report on results and observations that have materialized in
the development of specific tasks. I do not present a complete picture of the retrospective analysis
and the affiliated design processes, as this is beyond the limits of the thesis. The intent is to outline

analysis and observations that give context to the included papers.

Finally, in section 6.5, a comprehensive discussion of the educational design processes is presented.
This includes a detailed exploration of the design principles that have evolved from the initial HDH,
providing a comprehensive understanding of the theoretical and practical aspects of the design

process.

6.1 THE ANALYTICAL PERSPECTIVE - FOUNDATIONS FOR DESIGN

The analytical perspective considers different normative theory elements in the design process that

elaborate and justify aims and principles (Prediger, 2019). First, I discuss designing tasks for RC and
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justification, then designing for using tools and representational issues of GeoGebra concerning
variables as a general number, and finally, the content concerning the age group of lower secondary
students. HDHs are formulated from the analytical perspective and revisited from the design

perspective.

6.1.1 Designing for students’ exercise of RC
Designing for students exercise of RC involves the construction of mathematical problems that allow

students to produce and justify claims and solutions when using GeoGebra.

In reasoning, students often struggle to identify the relevant concepts and properties of a problem
(Duval, 2007); Lithner (2008) adds that this can be related to students anchoring their reasoning on
surface properties instead of the intrinsic properties of a given problem. He gives the following
example: “In deciding if 9/15 or 2/3 is larger, the size of the numbers (9, 15, 2, 3) is a surface property
that is insufficient to consider while the quotient captures the intrinsic property” (Lithner, 2008, p.
261). On the one hand, for students to be able to anchor their arguments in intrinsic properties, they
must at least be aware of them and know when they are relevant to, in the words of KOM, be
insightful and respond appropriately to the challenge (Niss & Hgjgaard, 2019). The design and the
problems must therefore be based on the student’s existing knowledge and competency. On the other
hand, the problems should not be trivial, as students can just apply well-known routinized
techniques or algorithms already considered trustworthy (Lithner, 2008). Familiarity with a
mathematical task can cause the students to not justify their claims and solutions, as the need for
validation diminishes. This observation aligns with the description of mathematical problems within
the KOM framework, where a mathematical problem can only be considered as such if it poses a

challenge to the individual attempting to solve it. This rationale forms the following HDH:

A: The intrinsic properties of a posed problem must be familiar to the students, but the type of
problem posed should be novel to students (based on Duval, 2007; Lithner, 2008; Niss & Hgjgaard,

2019).

This also implies that some progression within tasks and content is necessary so that students keep

a sense of novelty.

The second HDH is inspired by the work of White and Gunstone (1992), who proposed the task
structure “prediction-observation-explanation”. This structure involves students making predictions
about the outcome of an event, justifying their predictions, and subsequently testing their
predictions through observation. White and Gunstone suggested this structure for teaching and
learning in the natural sciences, but it has also been successfully adapted for task design in

mathematics education. Research on prediction tasks in mathematics education has demonstrated
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that requesting students to predict outcomes can encourage them to engage in mathematical
reasoning based on their conceptual knowledge (Kasmer & Kim, 2011; Lim et al., 2010). I emphasize
the justification of the prediction and refer to White and Gunstone’s task structure as “justified
prediction-observation-explanation”. The task structure is particularly relevant in digital
environments, where the instant feedback allows students to test mathematical conjectures and
claims empirically, akin to experiments in natural science, where the observed may confirm or refute
a prediction or need further explanation. Researchers such as Olsson (2017) and Hgjsted (2021) have
applied this structure particularly to GeoGebra, embedding it within a digital environment. In the
case of using commands in the algebra view, the justified predictions concern the translation
between algebraic and graphical representations and the dynamic behavior of the constructed
objects. This rationale forms the HDH:

B: “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support
students in forming claims and engage in justification processes about algebraic relationships and

concepts based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010).

6.1.2 Designing for the use of digital tools

The IAME determined that learning to use a tool is a lengthy process specific to certain situations.
This is why even experienced users can face challenges when confronted with a new problem. It is
essential to consider this aspect when designing tasks that involve digital tools. When introducing
students to a new tool, such as functionalities of the algebra view, it is essential to guide them through
the process of learning how to use it. Some challenges can be related to variations in syntax across
different regions or languages. For example, in Danish a comma is used instead of a dot for decimals.
The students will have to have to be reminded of this. Some tools, like a slider, may be completely
unfamiliar to students, and some guidance on its use is needed for particularities. For example, in
addition to pulling the slider, which many students do intuitively, the value of the variable can also
be altered by clicking and typing in a specific value. This can be useful if students want to test a

specific value.

In the literature review (paper 1), I found a scarcity of examples or discussions of students’ use of the
tools in GeoGebra’s algebra view or of papers discussing GeoGebra’s algebra view concerning
students’ reasoning, with respect to variables as general numbers within the age group. Only five

conference papers were included:

The five identified studies are all peer-reviewed but cannot be perceived as the same
quality as a journal paper. This indicates that the research on the potentials of
GeoGebra’s Algebra View and its functionalities for mathematical tasks and processes

other than functions is still developing. Two of the papers are theoretical, while three
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present empirical results. Four of the five studies make use of GeoGebra, and one
study by Lagrange and Psycharis (2011) makes use of a programming “turtle world”
software, LOGO, which has very similar affordances to that of the Algebra View in
GeoGebra. The software uses a programming language, whereas the Algebra View in
GeoGebra uses standard algebra notations and commands specific to the program.

(Gregersen, 2022, p. 4)

A literature review by Yohannes and Chen (2021) on GeoGebra in MER draws a similar picture. They
find that very few studies concerning this age group have been published in journals, and those
identified focused on geometry, while other mathematical domains concern higher educational

levels:

The result of this study indicated that, among all of the studies, Geometry accounted
for the highest number, with a total of 11, followed by analysis (n = 9) and Discrete
Mathematics/ Algebra (n = 5); there were no papers in applied mathematics and
general/ foundational mathematics. It can be realized from this finding that the
content domains of mathematics education were mainly senior secondary school

mathematics and higher education mathematics (Yohannes & Chen, 2021, p. 7).

Consequently, in the study’s first DR iteration, the design and construction of tasks were
predominantly influenced by the creative perspective to discover affordances of the algebra view with
educational value toward students exercising RC concerning variable as a generalized number. In
the following, I discuss the representational infrastructure of GeoGebra, in this case with regards to
students’ use of sliders and algebraic expressions in the algebra view. A dominant issue with the
representational structures of GeoGebra is that the complexity and amount of information may
hinder students’ exercise of RC, as they do not have the conceptual knowledge to understand the
representational system. In many cases, the algebra view contains symbols referring to mathematics
unknown to students in lower secondary education and a vast amount of information for the student
to manage, even in a quite simple construction. This is exemplified in Figure 12 where a dynamic
circle with a line representing its radius is constructed in GeoGebra. The construction in the algebra
view comprises five entries, each representing an object in the graphic view. One entry contains the

equation of a circle, and in all, the five entities contain 13 letters, 11 numeric values, and four words.
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All in all, this is a lot of symbolic information to process. In addition, the equation of the circle is

unknown to students in lower secondary school.

DR o= PANEIE ) Q
2| K

o I

. 8
o I ' s=12
= 1 1 1 @ 1
@ A= (474,247) : 7
Input Box for s:/1.2
s =12 : 6
O
-5 * 5 ®
5
B = Point(Circle(A,s))
= (-3.54, 2.46) ® ;
f = Segment(A, B) ?
O
= 1.2 2
® c : Circle(A, B) : ] fr
= (x4 4.74)* + (y- 247)? = 1.44 €
H
-8 -7 -6 5 4 -3 -2 10 1 2
+ Q

Figure 12 - The construction of a dynamic circle and its radius, illustrating the vast and complex
information in the algebra view

The second finding concerns the use of sliders in GeoGebra. Sliders have the potential to link
geometric and algebraic representations (Mackrell, 2011). Only a few examples of this exist
concerning the variable as a generalized number. The slider can be used to search for numerical cases
by evaluating geometric configurations, as in Tanguay et al. (2013), where students explore the
number of some polygon that covers a surface to identify divisors. In Soldano and Arzarello (2017),
students must investigate the numerical circumstances by which two circles become tangent by
manipulating three sliders that control the radius of each circle and the distance between the circles.
In these examples, the students do not have access to the algebra view but only to sliders on the
graphic view. This limits the students to making conjectures about the numeric values displayed, not

the relationships expressed in algebraic relationships (Paper 1).

To explore the potential of having access to symbolic representation in combination with the slider
and graphic representation, we need to expand beyond GeoGebra, to other uses of variables, such as

in functions or equations.

The MiGen project, explored by Noss et al. (2012) and Mavrikis et al. (2013), focused on students
learning pattern construction through the “expresser” microworld. The project involved a box to
represent numerals as a generalized number, with students employing it to express variable

relationships in constructed patterns. The crucial step was to provide students with graphic
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representation experiences for constant values and variables in generalizing numeric patterns into
algebraic relationships. “Locked” and “unlocked” boxes were utilized, and the box itself became a
symbol enabling explicit representation of changed and unchanged elements, as well as perceived

relationships within a model.

In another experiment with the microworld MoPiX, 17 year-old students could modify equations of
bouncing ball graphs, altering animations such as making balls collide or ‘juggle’. Kynigos et al.
(2010) observed students progressing to investigate how variables and constants influenced the

graphs, forming connections between MoPiX equation syntax and the animated behaviors of objects.

Two distinct approaches emerged in these two projects: the first used graphic representation to
enhance variable understanding, while the second introduced symbolism and prompted students to

explore its influence on graphic representation.

The two studies indicate that a microworld where students create and manipulate symbolic
representations that are simultaneously graphically represented serves as a context for conjecturing
intrinsic algebraic properties related to variables. However, as the representational structures of

GeoGebra can be complex, the representations must be considered with concern to the age group.
The following HDH includes considerations of designing tasks for the use of the algebra view:

C: Tasks where students create and manipulate symbolic representations that are simultaneously
graphically represented can serve as a context for conjecturing about intrinsic algebraic properties
related to variables (Kynigos et al., 2010). However, the complexity of the representational
infrastructure of GeoGebra must be considered so that the representations students are to handle

are accessible to them (paper 1).

6.1.3 Designing for lower secondary students in Denmark

In this section, I discuss the mathematical content with regard to the concept of variables and
suitable intrinsic properties for the age group of lower secondary students by taking into account the
HDHs A and C.

A. The intrinsic properties of the task must be known to the students but in problems novel to
students (Duval, 2007; Niss & Hgjgaard, 2019), because it fosters a need for validation
(Lithner, 2008).

C. Tasks where students create and manipulate symbolic representations that are
simultaneously graphically represented can serve as a context for conjecturing about intrinsic

algebraic properties related to variables. However, the complexity of the representational
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infrastructure of GeoGebra must be considered so that the representations students are

presented with are accessible to them (based on review).

Specifically, I discuss what concepts are familiar to students in 7t grade and can be symbolically and
graphically represented in GeoGebra, furthermore, in such a way that students can construct and

manipulate them within the algebra view.

Variables are one of the most fundamental concepts of algebra (Knuth et al., 2011). They have
different meanings and uses, such as representing a specific unknown value or function, a
generalized number that can represent several or infinite values, or a variable in a functional
relationship where it represents a range of values and has a systematic relationship to another set of
values (Rhine et al., 2019). This study considers the variable as a generalized number, which means

that it represents a range of values or all possible values.

It is widely recognized that concept formation has a dual nature and a development involving
processes and objects (Douady, 1991; Dubinsky, 1991; Noss et al., 2009; Sfard, 1991). The early stages
of mathematical education will typically focus on comprehending basic processes, such as counting
or performing calculations. For young students, concepts are initially tied to processes within specific
numeric situations. However, as students move on to lower secondary education, they must develop
a structural understanding of these processes (Sfard, 1991). Ideally, concepts evolve into abstract

objects, enabling the exploration of structures and relationships (Douady, 1991).

Concerning variables, Noss et al. (2009) emphasize that generalization involves moving beyond the
specific, recognizing the structural properties, relationships, and patterns that variables (and
constants) represent. Introducing variables often marks students’ first step into objectification,
requiring them to perceive a letter as representing all values subject to the same computational
manipulation as numeric values. This means that students must gradually objectify the processes
into abstract and structural concepts that can be manipulated. The variable represents relationships
and properties in structures with other objects. Hence, as objects in algebraic expressions, they
represent general rules that can be deduced from patterns or families of problems (Rhine et al.,
2019). Handling variables requires students to recognize the type of variable applied in a specific
context and how it relates to other objects. 7t grade students in Denmark have typically been
introduced to the definition of a variable as an expression of all values, and they have experienced
procedures concerning variables in equations, functions, and formulas (Ministry of Children and

Education, 2019).

As argued above, the complex representational system that commence from the use variable in
GeoGebra’s algebra view can preclude students’ engagement with justification. To keep the

representation manageable, I take the position that the representation should be as basic as possible
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to let students focus on the problem and justification rather than having to grapple with the

representation system.

In GeoGebra, as in both Euclidean and Cartesian Geometry, the point is the most basic object,
followed by lines and segments. Cartesian Geometry is taught in Danish primary education from the
early grades onwards (Ministry of Children and Education, 2019). Representations from the domain
of Cartesian Geometry are also incorporated in the representational infrastructures of GeoGebra,
making a basic concept like points in the coordinate plane accessible for students to represent and
transform algebraically. Plotting coordinates into a coordinate system is, for the most, a trivial task
in the 7th grade. From the 7t grade onwards, students are introduced to linear and non-linear
equations and functions, including the coordinate system’s graphical representations. They are,
however new concepts for the students and cannot be considered well-known mathematical

knowledge at that time.

Intrinsic properties and concepts can be algebraically and graphically represented by points and
lines and can be, depending on an explicit variable, equality, infinity, limits, parallelism, length, and
distance. Points can also have intrinsic properties, as vertices in a construction, or indicate a specific

property of other objects, e.g., the midpoint of a line.

What concrete properties and concepts to pursue are explored further from the creative perspective.

6.1.4 Overview of the humble design heuristics

The HDHs for the first iteration to be refined in the following are:

If you want to design tasks for early secondary students to exercise their RC in
justification about variable as a general number when using GeoGebra’s algebra view

and graphic view, you are advised that:

A. The intrinsic properties of the task must be known to the students but in problems novel to
students (Duval, 2007; Niss & Hgjgaard, 2019), because it fosters a need for validation
(Lithner, 2008).

B. “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support
students in forming claims and engage in justification processes about algebraic relationships

and concepts based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010).
C. Tasks, where students create and manipulate symbolic representations that are

simultaneously graphically represented can serve as a context for conjecturing about intrinsic

algebraic properties related to variables (Kynigos et al., 2010). However, the complexity of
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the representational infrastructure of GeoGebra must be considered so that the

representations students are to handle are accessible to them (paper 1).
Other didactical concerns that should be considered in the construction of tasks are:

e Include introductions to the new tools and support the interpretation of the representations
they produce in the support of students’ instrumental genesis (IAME).

e Progression in complexity

6.2 ITERATION 1: EXPLORING DESIGN POSSIBILITIES

The following section describes the creative perspective of the first iteration and presents snapshots

from the retrospective analysis, which leads to a revisit of the HDH.

6.2.1 The creative perspective - exploring design possibilities

The creative perspective in the first iteration was characterized by constructing tasks concerning a
range of intrinsic properties and representations to see how students would manage. In these
processes, I also decided to focus solely on tasks that used the algebra view, as it became
progressively more evident from the analytical perspective that this was a less explored territory in
MER for the age group. At this stage of the design phase, the aim was to explore possible design

ideas.

Seven tasks were part of the explorative design and became part of the classroom experiments in the

first iteration. In the following retrospective analysis, I discuss the lessons of these experiments.

6.2.2 Snapshots from the retrospective analysis

Out of the seven tasks, this section discusses three of them, representing core issues observed in the
classroom experiment and considered in the retrospective analysis. Two tasks had issues that
prevented their further development, while the third task inspired the creation of a microworld with

variable points.

The first issue was tasks where the algebraic properties were not represented explicitly, which led
the students to focus more on the geometric properties represented in the graphic view. The task

“Relationships between lines” (Figure 14) exemplifies this.

Title of task: Relationships between lines
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Paint
O A = (0, 2)
O B = (1,2)
Segment f

f = Segment(A, B)

=1

Questions
For the tasks, you only have access to the algebra view and the graphic view. In the app, you will find the
line segment AB = f.

1. Construct line segment CD by typing in the input field:
C =(x(A),0)
D = (x(A)+3AB,0)
Segment(C,D)
Investigate and explain what happens when you drag A or B.
Is it true that CD is always 3 times AB? Justify your answer.
Construct a line segment EF that is always half of CD.
Justify why your construction is correct.

What is the relation between line segments AB and EF? Justify your answer.

N oo s e op

Is it possible to construct a line segment four times the length of EF that is also double the length of
AB? Explain and justify.

Figure 13 — The task “Relationship between lines”. Above: The GeoGebra app for the task. Below: the
questions posed in relation to the task

This task made me aware of how variables can be constructed and represented in GeoGebra. Recall
that dynamic construction is achieved using variables, which can be either implicitly represented
through geometric shapes or explicitly represented using the slider tool. In the “Relationships
between lines” task, the variable was represented implicitly, which appeared to make the students
focus more on geometric properties and visual arguments, e.g., comparing lines by visual

assessment.
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Title of task: Construct a dynamic right-angled triangle
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Questions
1. Explore how points A and B move as you change j by pulling the slider and dragging the points.
2. Explain how point B moves and why.
3. Construct a new point, C, that has the distance j to point A, and ABC is a right-angled triangle, also
when you change the value of j.
4. Justify why your solution still works as you change the value of j.

Figure 14 — Construct a dynamic right-angled triangle. Above: the GeoGebra app for the task. Below: the
questions posed in the tasks

The second issue pertained complexity of representation when using symbolic notation in the
algebra view. Both the "Relationships between lines" (Figure 13) and “Construct a dynamic right-

angled triangle” (Figure 14) exemplify this concern.
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Notice that in both tasks, the endpoints of new lines depend on the position of already constructed
points. For instance, C = (x(A),0) and D = (x(A)+3AB,0) are dependent on the x-value of the point

A. This poses two problems.

The “Relationships between lines” task involves representations from three distinct domains:
coordinate geometry (since line endpoints depend on the coordinates of other endpoints), arithmetic
(as multiplicative properties are represented), and geometry (in the definition of lines). The students
engaged with the tasks but could get lost trying to decipher how to construct new points and lines.

Some students did not recognize that they were typing in coordinates. Instead, they tried to copy the

Title of task: Moving points

Empty GeoGebra applet
+ N 4 @ .
with access to the
7 algebra view but no
2 geometric tools.

Question 1 is solved with paper and pen on a coordinate system
B=(1,s) and C = (s,1),
1. Show on a paper coordinate system how you think B and C move as s changes value.
2. Explain why.
3. Type points B and C into the input field of the algebra view.
a) change the value of s by dragging the slider.
b) turn on the trace of B and C (by right-clicking on the points).
¢) again, change the value of s by dragging the slider.
d) explain what you see.
4. Did the points move as you predicted?
If not: Explain how they move and why. What did you miss in your prediction?

If they did: explain what you understood about the points that made your prediction true.

Figure 15 — Moving points. Above: The GeoGebra app for the task. Below: The questions posed in the
tasks
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systemic of the existing objects, which can be considered imitative reasoning (Lithner, 2008), and

they would base their justification on visual assessment alone.

In the “Construct a dynamic right-angled triangle” task, the surface property is the geometric
properties of a right-angled triangle, and the intrinsic property is that a variable represents the same
value every time it appears with in the same task. Both properties were familiar to the students in
the pilot test, and some would consider the variable, while others would get confused by the notation

of interdependent points.

In both tasks, the students had to learn how to interpret the new notation by exploring the
representation. The justification focused on the representational structure rather than the intrinsic
properties of the tasks. The retrospective analysis indicated that the use of notation where points

depend on other points appear too unfamiliar to the age group.

The “Moving points” task (Figure 15) follows the “justified prediction-observation-explanation”
structure. It later became the outset for the design idea of variable points, leading to the design of a
microworld (elaborated in the following sections). This task was more accessible to the students as
the ordered pairs in the algebra view were known to them, and the use of variables was explicit and
simple with familiar algebraic notation. The graphical representation of a point is also simple and
familiar. The “simplicity” I hypothesized would allow students to explore and put forward

conjectures to be justified, rather than getting “lost in translation” of complex notation.

6.2.3 Revisiting the HDH

The retrospective analysis of the explorative design adds specifications to the HDHs
A and C, which have been added in bold:

If you want to design tasks for early secondary students to exercise their RC in
justification about variable as a general number when using GeoGebra’s algebra view

and graphic view, you are advised that:

A. The intrinsic properties of the task must be known to the students but in problems novel to
students (Duval, 2007; Niss & Hgjgaard, 2019), because it fosters a need for validation
(Lithner, 2008). Intrinsic properties expressed in terms with variables may be
signified using explicit variables rather than implicit ones. This is because
implicit variables may cause students to focus on geometric properties rather
that algebraic properties and that explicit variables provide students with

access to direct manipulation of terms with a variable in the algebra view.
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B. “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support
students in forming claims and engage in justification processes about algebraic relationships

and concepts based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010).

C. Tasks where students create and manipulate symbolic representations that are
simultaneously graphically represented can serve as a context for conjecturing about intrinsic
algebraic properties related to variables (Kynigos et al., 2010). However, the complexity of
the representational infrastructure of GeoGebra must be considered so that the
representations students are to handle are accessible to them (paper 1). This might be
obtained with variable points as ordered pairs and simple algebraic expressions
familiar to lower secondary students. In addition, using notations of points

depending on other points is not advisable for lower secondary students.

6.3 ITERATION 2: THE MICROWORLD OF VARIABLE POINTS

From the creative perspective, the following elaborates on the design of a microworld and the
construction of a task sequence. Then, as in the previous iteration, snapshots of the retrospective

analysis are elaborated, and the HDHs are now progressed into design principles.

6.3.1 The creative perspective: From explorations to the design of a microworld

The idea of variable points grew from the task “Moving points”, presented above in Figure 15, but
was still unexplored as a learning object for justification. It was somewhat inspired by visual
programming, such as JavaScript — that is to say, making things move on a screen through
computational tools. Programming can engage children in reasoning about structures and patterns
in computer algorithms and is increasingly incorporated into mathematics curricula (Kilhamn et al.,
2022). Nonetheless, as a mathematics teacher I encountered issues regarding programming in
mathematics education, which is also reflected in MER. Programming has its own syntax, which is
not directly transferable to mathematics thoery. For example, a variable in mathematics is an
expression of generality, whereas in programming, a variable stores a specific value that can be

changed under certain events (Brating & Kilhamn, 2021; Kilhamn et al., 2022).

Another example is the definition of space. In most programming languages, including JavaScript,
the plane is described in pixels in positive integers; (0,0) is in the top left corner of a screen or
window, and pixels describe length and width relative to the screen size. This is considerably
different from the coordinate plane, which is endless in two dimensions from its origin.
Programming activities in regular programming environments lack mathematical theory and do not

necessarily influence students’ mathematical capabilities (Benton et al., 2017; Boylan et al., 2018;
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Kilhamn et al., 2022). Hence, Kilhamn et al. (2022) argue that programming activities in
mathematics should draw on mathematical theory rather than computer theory if the aim is to

support mathematical development.

From this perspective, GeoGebra provides a mathematical programming language, and the
microworld of variable points is an attempt to “make something move on the screen” that embodies
a mathematical subdomain where students can engage in justification. Though programming
inspired the idea of variable points, it had to be developed into something tangible for the student to
engage with and exercise their RC. Therefore, I will leave the programming analogy and describe the

design as a microworld.

There are different approaches to designing tasks for digital tools. Frequently, traditional math
problems have been redesigned to exploit the affordances of a particular tool. This study follows
another design tradition of microworlds, initially envisioned by Papert (1980), who aimed to
reconstruct mathematics teaching using computer software as media designed for mathematics
learners. Microworlds are now recognized as computational environments incorporating a cohesive
set of scientific concepts and relationships. They are thoughtfully designed to allow students to
engage in exploration and construction activities that foster meaningful learning experiences, aided
by carefully curated tasks and pedagogical strategies (Healy & Kynigos, 2010; Sarama & Clements,
2002). They provide students with an environment to analyze the components of objects and
construct and deconstruct objects. This should facilitate the exploration of mathematical
relationships among and between the objects and their corresponding representations (Hoyles,
1993). Since Papert (Healy & Kynigos, 2010; Papert, 1980) introduced microworlds, it has
transcended mathematics education into the natural sciences, and it has been used to design many

digital technologies.

Commonly, the structural aspects of a microworld are a set of computational objects designed to
reflect the structure of mathematical entities within some subdomain of mathematics. It does so
through (often new) multi-representations that link the underlying mathematical or scientific
entities or objects. Typically, it has a symbolic and a graphic component, but it can have others. The
objects and operations can often be combined to form more complex objects or operations.
Furthermore, a microworld will usually include a set of activities that support students in examining
the structure of the microworld, e.g., worksheets or verbal instructions in which the student is

challenged to use the objects and operations to solve a given problem (Edwards, 1998).

The design process was characterized by constructing tasks and showcasing them in different
settings to get feedback from colleagues, supervisors, professors at PhD courses, and the

participation teachers. In the following, I present the microworld and two selected tasks.
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The central objects of the microworld are variable points, which embody variables as a generalized
number in its singularity, and simple algebraic expressions (e.g., with a factor and/or a coefficient)
with coordinate geometry as the graphic representation. In its most simple form, the microworld of

variable points appears like this:
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Figure 16 — Basic state of the microworld of variable points

In the algebra view, there is an ordered pair with an explicit variable. In the graphic view, the ordered
pair is represented as a point in the coordinate plane; the point changes its position as the value of
the variable is changed with the slider. The variable is restricted to [-5,5], creating a limited space of
the dynamic movement, and points can be “shifted” in either dimension by adding a constant in the
ordered pair. There can be several variable points, and the ordered pair can contain simple algebraic
expressions and have a variable in both the x and y coordinate. The primary artifacts are the slider
tool and constructing ordered pairs through the input field. The two-dimensional space of the
coordinate system allows students to justify properties and relationships of both variable and
constant terms in the dynamic movement of points. The dynamic representation allows students to
consider both the structural and variable aspects within the same low-complexity representation. If
students can relate the movement of the points to the terms in the algebra view, the microworld
allows students to make claims and justify algebraic properties. This means that students working
within the microworld through retrospective analysis can advance HDHs A and C into more
concrete, elaborate design principles concerning justification. Conversely, HDH B requires the

implementation of the “justified prediction-observation-explanation” structure.
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Construction of a tasks sequence

For the classroom experiments in iteration 2, I constructed a task sequence organized into three
main problem sets, with several tasks and sub-questions. Furthermore, the task questions were
formulated for students to exercise justification. An online version was implemented in Class A. In
Class B and C, a version with a Word document and online GeoGebra apps was implemented. Both
versions, including task sequences, can be found in Appendix A. The three problem sets progress in
complexity. The first set is introductory and does not involve any variables. Instead, it reminds
students of their knowledge of ordered pairs and points in the coordinate system. In this set, students
are asked to conjecture and justify the relationship among static points. The second problem set
progresses to variable points in one dimension, either in the x or y value of the point. The third

problem set involves variable points in two dimensions, with x and y values.

Throughout the sequence, tools available in the geometric toolbar is kept to a minimum to ensure
students use the algebra view to complete the tasks. The introduction to the tools, such as the slider

and the trace function, was integrated into the tasks when needed.
Teacher collaboration

Initially, I met with the teachers to go over the task sequence and adjust specificities according to
their students and the class discourse. In addition, this allowed both the teachers and me to support
the students as they worked through the task. I supplied the teachers with a teacher instruction
guide, including suggestions on how to guide the students without giving them specific answers and
how to support them in forming justifications and solutions to each subtask. Between each classroom
experiment, the design was evaluated together with the classroom teacher. In class, we noticed that
students struggled to formulate written answers, even when they were able to explain and justify
orally. To support students’ written justification, we therefore developed an answer guide, which was

introduced to the students at the start of the experiment.

Below is an example of an answer guide for question 4b in problem set 3 (Appendix A). The answer
guide was inspired by Duval’s (2007) method of structuring mathematical reasoning with two
premises and a conclusion, but recognizing that students are not required to produce formal proofs
but justifications. Therefore, the answer guide prompts students to elaborate on their mathematical
knowledge about relevant intrinsic properties and connect it to their answer. The answer guide

meant that tasks were now presented in a Word document, rather than being online.
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Answer: Answer guide:

Your argument must include the following points:

« What is required for a point to move from the 2nd
quadrant to the 4th quadrant?

« What is the coordinate set for J?

» Why does it lead to that J moves from the 2nd quadrant
to the 4th quadrant?

The evaluation with teacher 1 after the test in classroom B concluded that students still struggled to
form cohesive written arguments, but the answer guide prompted students to further reflect on their
solutions and incited them to refer to intrinsic properties. Consequently, it also added to the time
students spent on each task, thus fewer students completed the whole set. Going forward, to
maintain focus on the student’s use of the algebra view, the impact of the answer guide is not further

explored, but I consider it a variable in the design that enhances the data obtained.

6.3.2 Snap shots from the retrospective analysis

As Edwards (1998) points out, students’ difficulties with a microworld can arise from issues in the
design and interface and can be helped through changes to design and tasks. Other difficulties are
evidence that the student is confronting a significant learning opportunity. Indeed, the retrospective
analysis should identify tasks that hindered students from exercising their reasoning competencies
in the justification process. For task development, the retrospective analysis explores how the
microworld allows and hinders opportunities for students to engage in justification processes as an

exercise of RC.

To gain a comprehensive understanding of how students approached the tasks, and to identify the
significant tasks, each data set (representing the work of one student pair) was compiled into a
collective Excel sheet. I summarized the students’ responses and noted any interface issues. I
identified and analyzed cases of students appropriating the microworld in their justification
processes and confronting significant learning opportunities concerning properties of the variable.
An analytical tool was developed in iterative processes as an attempt to capture the intricacy of the
interplay of students’ tool use and justification processes. The development of the analysis tool and
results of these analyses are elaborated in Chapter 7 and 8. Cases where students were challenged
but engaged in reaching a solution and justifying it provided deeper insights on the microworld and
task design, as they both exposed challenges within the design and how affordances of the

microworld were (intendedly and unintendedly) used by the students.

Two tasks emerged as particularly significant: the prediction tasks and the “Equal points” task. Both
are presented below. Parts of these two tasks also appear in the papers 2, 3, 4, and 5, but the full

versions presented here can afford additional context. Following the elaboration of iteration 3, I
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present some of the design development that emerged from analyzing students’ work on these two

tasks.
Prediction tasks

The “justified prediction-observe-explain” task structure was implemented in the task sequence as
the first tasks in problem sets two (concerning one-dimensional variable points) and set three
(concerning two-dimensional variable points). Below are the two prediction tasks illustrated in
Figure 17 and Figure 18. The first prediction task is discussed in paper 2 and 5. The two tasks were

developed from the “moving points” tasks (see Figure 15). As pertained in paper 5,

“Unlike traditional positions of prediction in mathematics education as a statement
or conjecture anticipating either the solution to the problem or the strategy used to
reach a solution (e.g., Boero, 2002; L. A. Kasmer & Kim, 2012; Palatnik & Dreyfus,
2019), the intention in this case is to leverage predictions and thus give “students the
opportunity to defend or refute ideas” (Kim & Kasmer, 2007, p. 298). Consequently,

I consider the prediction task a problem in itself...” (p.5).

A notable modification compared to the explorative version in iteration 1 (see figure 16) is the shift
from making predictions on a traditional paper coordinate plane to a restricted interface of
GeoGebra. The confined interface transforms the graphic view into a notation interface with dynamic
tools that allow the students to move points on the screen and trace their movements, replicating
dynamic movement. The restrictions are enforced to prevent students from constructing the points
by typing the variable points into the algebra view. Predicting dynamic behavior and justifying the
prediction allows inference that would not be possible in a pen-and-paper environment, as both the

constant and the variable would be represented statically (Noss et al., 2012).
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Titel: “Justified Prediction- Observation-Explanation” task of one-dimensional variable points
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Read:

Points can have a variable in the coordinate set such as these two points:
A =(1,s) and B = (s,1) where s is a variable.

Q2

Show and explain how you think points A and B move in the coordinate system when s changes value.

(To do so, you can use the tools in the toolbar, and you can also right-click and use the tools there)

Q3

Justify your hypothesis - why do A and B move as you claim?
Answer guide:

In question 2 you have shown how you think A and B move.
You must argue why the points move exactly like that.

» Write what you know about the coordinates of the points.

» Write why this means that they must move exactly as you say.
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Construct the points A = (1,s) and B = (s,1). It is important that you write s in the coordinate sets.
Q5

a) Change the value of s by dragging the slider.

b) Turn on “show trace” for the points (right click on the points)

¢) Change the value of s again by dragging the slider.

d) Explain to the camera how the points move.

) Also explain why they move like that.

Figure 17 - Justified Prediction- Observation-Explanation task, iteration 2, problem set two
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Titel: “Justified Prediction- Observation-Explanation” task of two-dimensional variable points

D (] 7 @ S
outn : > onia : ; >

3 3 °

.
1 : °
i  Jexis
L ]

: gl -
Initial state i Q1 =
Q1

D = (s,s) and s is a variable.

Show in the coordinate system how point D moves when s changes value (You can use the tools in the toolbar, and you can also right-
click).

Q2

Justify your hypothesis - why does point D move as you claim?

Answer guide:

In question 1 you have shown how you think D moves. You must argue why D moves exactly like that.

Write what you know about D and why this means that D moves exactly as you say.
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a) Type D = (s,s) into the GeoGebra app.

b) Change the value of s by dragging the slider.

¢) Does the point move as you expected?

d) Describe here how the point moves.

e) Justify why D moves exactly like that.

Answer guide:

Consider your answer for question 2. Can you still use the argument after you have seen the point move in GeoGebra?
« If yes, copy it down here. Is there anything that needs to be added or changed?

« If no, formulate a new argument

Figure 18 - Justified Prediction- Observation-Explanation task, iteration 2, problem set three
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Specifically, the restricted interface gives access to the ‘move tool’, ‘the point tool’, the ‘trace
function’, and the ‘pen tool’. The point tool enables the placement of free points on the coordinate
plane, allowing subsequent movement using the move tool. When using the point tool, students must
assign numerical values to each point they place. Multiple values of the variable can be depicted by
plotting several points, shifting a single point, or activating the trace function, which leaves a track
of points where the point is dragged across the screen. However, tracing can be challenging when
moving a free object as it is susceptible to cursor movements. The point tool and trace function are
designed for representing mathematical objects and properties. In contrast, the pen tool allows free
drawing, requiring students to apply mathematical properties or functionality, such as the notation
of values, sketching, plotting, tracing points, or drawing lines. Regarding RC, the prediction task
required the students to expand their radius of action (Niss & Hgjgaard, 2019), as predicting variable

points are a new kind of problem for them.

Furthermore, the restricted interface also required an unfamiliar use of the tools. Hence, the
prediction tasks also involved processes of instrumental genesis. In paper 5, I demonstrate how the
instrumental genesis process also contributes to the development of the technical aspect of RC, as
the progressing complexity of tool use also necessitates inferences about the intrinsic properties of
the prediction. However, the restricted interface also did cause confusion for some of the students.
For instance, some would attempt to activate the algebra view or even open a new GeoGebra app to

construct the points in the algebra view, obstructing the prediction step.

Paper 5, elaborate that the dynamic behavior of objects in a DGAE reflects the process-object nature
of concept formation as either a discrete collection of examples or continuous movement. Miragliotta
and Baccaglini-Frank (2021) describe that in predicting dynamic objects, students may pinpoint
specific positions or envision, enact, or imitate continuous movements. This also holds true for
variable points, as students can predict their dynamic behavior as shifting between positions in a

coordinate plane or moving along a trajectory.

In paper 5, both discrete and continuous prediction is observed in the justification process of a pair
of students, as they progress from predictions based on discrete examples to ones based on
continuous movement. Naturally, both types are observed across the data set from these tasks,

through the discrete is more common.

Recall that the nature of a prediction task requires that students draw on their own knowledge to
make the prediction and justification. The observe-and-explain steps of the prediction task also
allowed students to further elaborate, adjust, or advance the prediction and justification. Here

follows an example from class C, school A.
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In paper two, I present a short argument put forward by a pair of students concerning the first
prediction task (see Figure 17). The students claim a structural relationship: that A and B form a

slanted line. This is true but not a relevant answer to how the points move in the coordinate plane.

After the students test their prediction by observing the points move on the screen by animation,
they explain that the points move more like a cross, though the points do form a slanted line. After
observing the tracing of points, they also add that the points can continue tracing infinitely. In this
case, the observe-and-explain step of the task, prompt the pair to adjust their prediction to focus on

the trace of points and elaborate on more relevant properties.

The adjustment and elaboration of the prediction was very common in the observe-and-explain
phase, particularly in the first of the prediction tasks. Properties that commonly appeared in the
justification of predictions were equality, infinity, limits, that the variable has the same value in all
terms it appears in, structural relationships of the point’s trajectories with regard to the coordinate
system, and the structural relationships of the line formed between A and B as having a constant

slope.

For the second prediction task, the prediction was very short, and very few students justified it. I
ascribe this to two factors. For one, in the second prediction task, the unfamiliar had become more
familiar, which was evident as students were very confident in their prediction. Consequently, the
students considered their prediction true and were less inclined to justify it. Secondly, the students

became less engaged in the tasks as they tired near the end of the experiment.
The equal points task

The equal points task is discussed in papers 3 and 4. Paper 3 concerns iteration 2, and paper 4
concerns iterations 2 and 3. The task is part of the second set with one-dimensional variable points,
and concerns points A and B from the first prediction task. For this task, the algebra view and its
tools are accessible, but the toolbar is restricted to the cursor, the line construction tool, the parallel
line construction tool, and the perpendicular line construction tool. The restriction on the toolbar
was made to ensure that the students used the tools accessible in the algebra view. This task,
particularly Q8, posed a significant opportunity for student’s justification processes concerning the
algebraic terms of the variable points, as related to equality, but it was missed by most students. In
task A, all students constructed a point C that was not equal to point B for any value of s. In task B,
the students were able to recognize that A and C could not be equal, but most students’ justification

relied on the geometric property of parallelism in the movement of the points.
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Title: The “equal points” task”, iteration 2
Q7
a) When does A = B?

b)  What arguments can you come up with to justify when A = B?

Answer guide:
For the answer you must see how many different arguments you can come up with, which justify that your answer in 7a) is correct.
Consider:
. What do you know about the points?
What do you know about the variable s?
. What can you see?

. Why are the points not the same elsewhere?
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a) Construct a new point C depending on s, which moves parallel to A (so s must be in the coordinate set of the new point).

b) Can C = A, and if so, when?

¢) Can C = B, and if so, when?

d) Justify your answer.

Answer guide:

You must argue why the points are equal or not. Therefore, you must consider what it takes for them to be equal. Write what you find
out as the first point in your argument.

» Write something about point B.

» Write something about point C.

» Write why this means that your answer must be correct.

If you find that C cannot be equal to B, try to see if you can change C so that they can. Maybe that can support your argument?

Figure 19 — The “equal points” task, iteration 2, problem set 2

In Q8c+d, all but one pair of students answered that C = B was not possible based on
phenomenological justification. One pair of students did recognize that if they changed point C while
maintaining parallelism in its trajectory to that of A, it would be possible for C to equal B. This pair

was subjected to analysis in paper 3, while the whole data set of the task was analyzed in paper 4.
A significant discussion in a design context is why Q8 was inaccessible to most of the students.

Paper 3 indicated that the pair who did solve the task obtained a generalized view of variable points,
as they considered point C one set of a collection of possible sets. In paper 4, I argued that this

conception was a prerequisite for students’ engagement with the task.
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Other valuable insights, in a design perspective, from paper 3 concern the phenomenological
impressions of the variable points related to the algebraic terms in the coordinate sets, which
students can experience and use in their justifications when solving the equal points task. One such
insight was that the animation of a slider can give the impression that the speed of points depends
on the coefficient. Another was that changing the coefficient could be experienced in terms of length
of the trajectory of points and that the intersections of two trajectories indicate the coordinate

position for when points are equal.

6.3.3 From HDH to design principles

The retrospective analysis of the two tasks can now provide insight allow for the addition of empirical
arguments to the HDH, advancing them into design principles, proving concrete recommendations
related to the normative elements of the design principles. The added insights are in boldface, and

the design principles are in the form proposed by Van den Akker (1999) (see chapter 4.).

If you want to design tasks for early secondary students to exercise their RC in
justification about variable as a general number when using GeoGebra’s algebra view

and graphic view, you are advised that:

A. The intrinsic properties of the task must be known to the students but in problems novel to
students (Duval, 2007; Niss & Hgjgaard, 2019), because it fosters a need for validation
(Lithner, 2008). Intrinsic properties expressed in terms with variables may be signified using
explicit variables rather than implicit ones. This is because implicit variables may cause
students to focus on geometric properties rather that algebraic properties and that explicit
variables provide students with access to direct manipulation of terms with a variable in the
algebra view. Students’ knowledge about properties related to variables and
algebraic terms, such as equality, infinity, and structural relationships, can be
operationalized in justification processes through tasks about variable points.
However, tasks that require students to have a generalized conception of
variable points can prevent students from exercising RC. Furthermore, tasks
where points move on parallel trajectories can deflect students to provide

justifications of a geometric nature rather than algebraic.

B. “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support
students in forming claims and engage in justification processes about the dynamic behaviors
of variable points and engage in justification about algebraic relationships and concepts
based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010) of properties of the

variable to justify patterned movements as algebraic relationships. The
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observe-and-explain phase urges students to elaborate and adjust their
predictions according to observations. In addition, it is favorable to use a
dynamic interface for the prediction rather than a paper environment. The
dynamic interface allows students to represent variable relationships as
variables, and dynamic tools allow students to predict variable points as both
continuous and discrete movements. However, the restriction can be confusing,
and students might disrupt the process by jumping ahead in the task, or by

constructing points in the algebra view if made accessible.

C. Tasks where students create and manipulate symbolic representations that are
simultaneously graphically represented can serve as a context for conjecturing about intrinsic
algebraic properties related to variables (Kynigos et al., 2010). However, the complexity of
the representational infrastructure of GeoGebra must be considered so that the
representations students are to handle are accessible to them (paper 1). This might be
obtained with variable points, as ordered pairs and simple algebraic expressions are familiar
to lower secondary students. In addition, using notations of points depending on other points
is not advisable for lower secondary students. Using the animation feature of the slider
can provide students with phenomenological impressions of speed as a dynamic
property of a variable with a coefficient. If the trace function of a point is active,
changing the coefficient in a variable point can be experienced in terms of the
length of the trace, and on the intersections of traces, to indicate the coordinate

position when points are equal.

6.4 ITERATION 3: STRENGTHENING DESIGN PRINCIPLES

From the creative perspective, the following elaborates on the revision of tasks. Snapshots of the
retrospective analysis are elaborated on, but contrary to the previous two iterations, the design

principles are not revisited, as they are revised and discussed in the subsequent discussion.

6.4.1 The creative perspective

Several developments were implemented in the third iteration. The entire task sequences can be
found in Appendix B. Due to the limitations of the kappa; I give a general description of the
development of the sequence and only elaborate on the development of the prediction tasks and the

equal points tasks.

In the third iteration, the introductory tasks emphasized trace and animation and allowed students

to explore variable points in a preconstructed GeoGebra worksheet. Entirely new tasks containing
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several sliders, were also introduced, to emphasize the difference between variable points that co-
vary and points that do not. Some tasks with parallel moving points were redesigned so that the
intrinsic properties focused on the coefficient rather than the geometric property of parallel

trajectories, which deflected students from algebraic justification.
Developments concerning prediction tasks

To accommodate students’ confusion with the restricted interface of the prediction tasks, the
interface was changed to a regular GeoGebra interface. Instead, the task formulation described
which tool to use for the prediction, and the first prediction task was introduced collectively in class.

In addition, students were asked to specifically predict the trace.

The success of the prediction task led me to implement more prediction tasks with more complex
terms than in iteration 2. In Figure 20, the prediction task that follow the students prediction of the
point A1 = (1,s) (as in iteration 2) is presented. In this new prediction task, the students must predict
the movement of point A2 = (1, s-1), requiring them to consider and justify how a constant term
influences the position of the trace. This was possible for students to predict, as they had worked

with traces in the microworld, which limits the variable to -5 and 5.

Title: “Justified prediction-observation-explanation” task of trace as related to constant terms
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For this question you can use ,add and the .
Guess and show how A2 = (1,s - 1) behaves in the coordinate system when changing the value of s.
Also show where the track will start and end.
Explain your guess.
Explain to each other how A2 is different from point A1.
Now construct point A2 = (1,s-1) and examine what happens when you change the value of s.
Does it match what you thought? Completely, partially, or not at all? Explain why.

Figure 20 — “Justified prediction-observation-explanation” task of trace as related to constant terms,
iteration 3, problem set 2

Developments concerning the “equal points” task
Several adjustments were made to the equal points task. Some of them are also described and argued
extensively for in paper 4. In the version of iteration 2, a point C was moving parallel to the trajectory

of A. In the version of iteration 3, instead of C, point A2 moves on the same trajectory as A1. This

change was made to accommodate two issues. For one, the parallel moving points deflected many
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students’ attention from the terms in the algebra view, and thus, they gave a geometric justification
for their answer (paper 4). Secondly, as the points now moved on the same trajectory, but in two
different intervals, the task extended students’ experience concerning the influence of constants on

the position of the trace of variable points, from the prediction task presented in Figure 21.

Title: The “equal points” task, iteration 2
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Note that: A1 = (1,s) and A2 = (1,s-1) and are constructed in the prediction tasks.
B has in question Q3 a-f) been defined as B = (s,1).

i) Can A1 = B? Please mark your answer and explain why/why not.

a. Yeswhen:
b. No.

j)  Can A2 = B? Please mark your answer and explain why/why not.
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k)  Ifyou change A2’s x coordinate, is it then possible for A2 = B?

a. Yeswhen:
Explain why your solution applies.
b. No. Explain why.

1) Change A2 back to A2 = (1,5 - 1).
m) Now, if you change A2’s y coordinate, can A2 = B without A2 = A1?

a.  Yeswhen:
Explain why your solution applies.
b.  No. Explain why not.

Figure 21 - The “equal points” task, iteration 3, problem set 2
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The topmost concern of the equal points task was to make question 8c-d (see Figure 19) more
accessible to students. This was addressed by formulating the questions more concretely, with clear
instructions. The formulation now simply directed students to change the coordinates of A2 to obtain

equality to B by transforming the x and y coordinates (see question Q3, k-m in Figure 22).

6.4.2 Snapshots from the retrospective analysis

The students from school B, participating in the third iteration, had very little experience with using
GeoGebra. Consequently, many students experienced technical issues with the algebra view. 7 pairs
out of 18 did not answer the task due to technical issues or misunderstanding the task. Moreover, it
also became apparent that students who struggled with identifying intrinsic properties in the
geometric view was further challenged by the information in the algebra view. An example of such
issues is demonstrated by a pair of students who put forward a faulty justification for question Q3

k): If you change A2’s x coordinate, is it then possible for A2 = B?
Yes, when A2 = (2, s-1) because A2 and A1 are then on different trajectories.

The students focus on the change of trajectory of A2 as a result of changing the y coordinate from
1 to 2 using the algebra view. They seem focused on the result of manipulation rather than the
intrinsic properties of the task. The students fail to relate the justification to equality between
the relevant points B and A2. Therefore, even though the students do refer to the coordinate set,

they struggle to identify intrinsic properties in their justification.

Thus, it is advisable that the students have some experience with GeoGebra’s graphic view prior to

working with variable points tasks. I address this further in relation to the equal points task.

In general, less students engaged in justification in iteration 3 compared to iteration 2. This is evident
in paper 4. In iteration 2, all students who provided a solution also justified it (between 10 and 13
pairs of students out of 17). In iteration 3, however, only between 4-6 pairs of students justified their
answer out of the 10 pairs who provided a solution. This reflects the general picture of the two

iterations.

This can be explained by several factors, e.g., that students had been participating in online schooling
for long periods of time, giving them less exercise with RC. In general, school B put less emphasis on
mathematical competencies than school A, and their regular teacher did not attend on the day of the
experiment, due to covid, so the students were less prepared and supported during the experiment,

as the substitute teacher was not informed about it.
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The new prediction task

The new prediction task (see Figure 20) of the point A2 = (1, s-1) was more challenging than the
prediction tasks from iteration 2. Several pairs made faulty predictions and justifications. For
instance, several pairs predicted that the point moved on x=-1 or that the point would move slower
when animated. This made the observe-and-explain step of the task even more significant for the

justification process, as students needed to adjust their faulty prediction.

The change from a restricted interface to a regular interface, with the algebra view active, meant that
students could test their prediction on top of what they had drawn with the pen, making details of
their predictions more explicit in the test-and-observe step. For example, by showing how the drawn
length or placement of the trace corresponded with the test. In addition, students could more easily
compare new predictions to those already tested. Question D, requiring students to compare A1 and
A2, directed students’ justification to explain how the constant term influenced the trace and the
comparison of variable points in the prediction, ensuring that students put forward justifications

that related the trace to the algebraic terms in the ordered pairs.

Unfortunately, there were still students who were confused by the prediction tasks and would jump

ahead to constructing and testing the points, so that problem was not eliminated.
The “equal points” task

The new task design and the more direct formulation of questions (c-d of iteration 2; k, I, m of
iteration 3) did overcome the identified issue of the equal points task. In the third iteration, there
was no geometric justification, and there was an increased number of students who attempted to

solve question M.

Students quite easily found a solution for question K, obtaining equality between A2 and B by
changing the constant in the y coordinate, and there were no geometric arguments. Instead, there
was a greater diversity among arguments of those who did justify their answer. Students’ answers
also provided additional insights into the phenomenological impressions students can have in the
task. In paper 4, I discuss the students’ phenomenological impressions of trace and intersection in
their justification of solutions to the equal point tasks, in which some students use the
phenomenological impression to argue for structural relationships. For example, consider these

justifications:

Can A2 = B? (A2 =(1,s-1), B=(s,1))

No, as there will always be one point that has a distance to the intersection when the
other one is at the intersection.
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And

If you change A2’s x coordinate, is it then possible for A2 = B?

Yes, when A2 = (2, s-1), because then A2 and B have the same distance to the
intersection of the trajectories.
These justifications are phenomenological in nature but also imply that the students understand
the relationship between changing the x coordinate and the position of the trajectory of the point
left by the trace. Moreover, they understand that the intersection of these trajectories indicates

possible equality between the points.

In paper 4, I also relate such justifications to students’ epistemic mediation in their use of the graphic
view, and I argue that it can be a steppingstone for students’ epistemic mediation in their use of the
algebra view, if they are challenged to relate their justification to the ordered pair of the variable

points.

Concerning question M, “if you change A2’s y coordinate, can A2 = B without A2 = A1?”, there was
an increased number of students who attempted to solve question compared to question C in
iteration 2. This shows that the direct formulation of the question made it more assessable and
engageable for both problem-solving and justification. Still, many students did not obtain equality
between point A2 and B. In paper 4, I relate this to the problem handling competency and the symbol

and formalism competency.

The ability of students to make use of the algebra view as a tool for justification is closely linked to
their understanding of symbolism and formalism. Incorrect answers may result from incomplete
knowledge of algebraic rules and procedures. Furthermore, if the student does not attempt to justify

their solution, their mistakes may go unnoticed.

An issue that relates to student problem handling competency is that some students rely too heavily
on a single strategy. Four pairs out of the ten could justify why their technique did not provide a
sound solution, yet they were reluctant to attempt another technique. Consequently, the lack of a

solution becomes an argument, and hinders the students exercise of RC that has creative qualities.
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6.5 DISCUSSION, PART 1: DESIGN PRINCIPLES AND DESIGN

In this section, I discuss the results in answering the research question of the chapter:

In what ways can tasks be designed to encourage lower secondary students to exercise their RC

when using a DGAE in the case of justification focusing on variables as a general number?

I will articulate and discuss the answer in the form of three particular but related results of the design
processes. The first results are the design principles also considering contributions of iterations 3.
The second result is the microworld of variable points, and the third result are the concrete tasks

presented in the chapter.

6.5.1 Design principles

The design principles are the main contribution toward answering in what ways. As is the nature of
design research, the design principles are particular to the design. However, some aspects can be
considered from a more general perspective of reasoning in mathematics education, which I will

debate after presenting the principles.

The principles have descriptive theory elements (Prediger, 2019) that describe features of tasks and
phenomena, such as particular phenomenological impressions that can occur. The design principles
have predictive theory elements (Prediger, 2019) that argue for certain solutions and actions toward
a given aim or problem, or predict outcomes of actions, design elements, or structural elements.
Explanatory theory elements of certain phenomena are closely related to the theoretical
development (Prediger, 2019), which are presented in the subsequent chapters. Hence, explanatory

elements are discussed in the final discussion in Chapter 9.

In the following, I present the final design principles A, B and C. Again, they are presented in the
form proposed by Van den Akker (1999) (see chapter 4). New contributions from iteration 3 are
added in bold.

If you want to design tasks for early secondary students to exercise their RC in
justification about variable as a general number when using GeoGebra’s algebra view

and graphic view, you are advised that:

A. The intrinsic properties of the task must be known to the students but in problems novel to
students (Duval, 2007; Niss & Hgjgaard, 2019), because it fosters a need for validation
(Lithner, 2008). Intrinsic properties expressed in terms with variables may be signified using
explicit variables rather than implicit ones. This is because implicit variables may cause
students to focus on geometric properties rather that algebraic properties and that explicit

variables provide students with access to direct manipulation of terms with a variable in the
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algebra view. In order for students to be able to recognize the intrinsic properties
of a task, it is recommendable that students have experience with using the
graphic view for epistemic mediation, prior to working with variable points.
Students’ knowledge about properties related to variables and algebraic terms, such as
equality, infinity, and structural relationships can be operationalized in justification
processes through tasks about variable points. However, tasks that require student to have a
generalized conception of variable points can prevent students (at a secondary level) from
exercising RC, which can be addressed by direct action-oriented formulations of
question instructing students to modify terms in the algebraic expressions.
Finally, despite parallelism being a known structural relationship for the students, tasks
with parallel relationships can deflect students to provide justification of a geometric nature

rather than one related to the variable.

“Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support
students in forming claims and engage in justification processes about the dynamic behaviors
of variable points and engage in justification processes about algebraic relationships based
on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010) of properties of the variable
to justify patterned movements as algebraic relationships. Predictions of variable points
containing a constant term along with the variable in the ordered pairs can
provide students with the opportunity to predict and justify the placement of
traces as related to the constant. Comparison of two or more points in the
prediction can engage students to justify the positions of traces as related to the
differences in algebraic terms. The observe-and-explain phase urges students to
elaborate and adjust their predictions according to observations. In addition, it is favorable
to use a dynamic interface for the prediction rather than a paper environment (Noss et al.,
2012), because the dynamic interface allows students to represent variable relationships as
variable and to predict variable points as both continuous and discrete movement.
Predictions of variable points in the GeoGebra environment also allow students
to test constructed points, on top of their prediction, making small differences
between predictions and tests stand out visually. Expect that students need
close guidance in prediction tasks as the prediction step can confuse students
and students might “disrupt” the process by jumping ahead in the task and constructing

points in the algebra view.

. Tasks where students create and manipulate symbolic representations that are

simultaneously graphically represented can serve as a context for conjecturing about intrinsic
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algebraic properties related to variables. However, the complexity of the representational
infrastructure of GeoGebra must be considered so that the representations students create
and manipulate are familiar to them (based on review). This might be obtained with variable
points, as ordered pairs and simple algebraic expressions are familiar to lower secondary
students. In addition, using notations of points depending on other points is not advisable
for lower secondary students. Using the animation feature of the slider can provide students
with phenomenological impressions of speed as a dynamic property of a variable with a
coefficient. If the trace function of a point is active, changing the coefficient in a variable point
can be experienced in terms of the length of the trace and on the intersections of traces to
indicate the coordinate position when points are equal. Students can also experience
equality between variable points, as dependent on the distance to an identified
intersection of traces. Students’ identification of structural relationships
through the phenomenological impression obtained from the geometric view,
and through epistemic mediation, can be considered a stepping stone toward
justifying those relationships in algebraic terms. However, students’ exercise of
RC as justification also depends on their problem handling competency and

their symbol and formalism competency.

In the research question, I ask in what ways, emphasizing that the design and design process has
materialized in certain ways and not in other possible ways. The following highlights choices taken

in the design process and discus how these choices have addressed issues concerning RC and DGAE.

Students often face challenges with a high level of complexity in both reasoning and the use of DGAE.
In reasoning, this complexity involves understanding the relevant concepts and properties of a
problem (Duval, 2007). In the DGAE, it consists in understanding the representational structures in
which they are expressed. Principles A and C have the same normative element of familiarity as an
approach to overcome the high level of complexity. As a result, they allow students to focus on
justification processes, but with elements of novelty to progress a need for justification. This is a way
to approach design that emphasizes the exercise of competency rather than conceptual development,

in which learning of unfamiliar concepts are the goal.

In the theoretical foundation (Chapter 2) and in paper 5, I describe Vergnaud’s (1998b) concepts of
schemes. Particularly in paper 5, I discuss how we may see students’ justification processes in the
light of possibilities of inference between theorems-in-action about concepts-in-action. In this
perspective, familiarity means that students have some theorems-in-action about the intrinsic

properties but must create inferences between theorems-in-action that are particular to the task they
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are solving. Hence, through the perspective of Vergnaud’s schemes (1998b), the normative theory

element of familiar concepts and properties in novel problems create possibilities for inference.

There are two central challenges in design toward such goal: what properties are familiar to the target
group, and which problems are novel. Concerning the first, the diversity of students’ knowledge is a
fundamental precondition, so despite the approach of familiar concepts and properties, descriptive
theory elements are needed to describe what properties are suitable for the target students. The
generalized conception of variable points is an example of an overly complex property, excluding
students’ engagement in justification, whereas infinity, limits, and equality are concepts used in

justification by most students in the experiments.

The second challenge of novel tasks has been obtained through the microworld. The microworld
itself has a familiar and novel aspect for the students. As argued in the analytical perspective, the
ordered pairs are indeed familiar to students, but this was not the case for the variable and algebraic
terms in this context. This has allowed for the creation of tasks unlike regular mathematical tasks,

which are novel to all students.

Design principle B concerns a particular kind of task structure as a way of facilitating justification
processes, and hence differ from A and C. This reflects a choice in the focus of the design chapter.
There are other kinds of tasks that I could have emphasized and explored in the principles, e.g.,
construction tasks or pattern generalization tasks. The choice to emphasize “justified prediction-
observation-explanation” as a way to design reflects a personal curiosity of how such tasks might be
designed in the context of DGAE. More importantly, the task has a strong relevance to the practice
community in promoting justification in the classroom through a task structure that is adaptable to
different subjects and environments. Principle B is hence an elaboration of how A and C can be

operationalized into a task structure.

6.5.2 The microworld

We create microworlds with the hope that it makes the abstract world of mathematical concepts
easier for students to grasp. The microworld of variable points is indeed developed with such intent.
It builds on the tradition of microworlds to develop visual representations to explore algebraic
expressions, but contrary to many others (e.g., MiGen and MoPiX), it exploits a regular DGAE
accessible to students, and it is embedded in the representational structure of coordinate geometry.
Though the microworld of variable points is designed for students’ exercise of RC, variable points
hold potential for the exercise of other competencies and learning of basic algebraic concepts. In the
progression of coordinate geometry, there is a big gap in comprehension and algorithms, from
placing ordered pairs as points in the coordinate system to the next theoretical step, the distance

formula or linear function in linear algebra. The microworld of variable points has potential to lessen
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that gap, as it is an explorative environment where students can progress their understanding of

algebraic concepts, variables, and terms in the context of the coordinate system.

6.5.3 Tasks for the exercise of RC in justification

I have presented two kinds of tasks that have proven to be particularly valuable in the context of
microworld for students to exercise RC in justification: the “justified prediction-observation-
explanation” tasks and the “equal points” task. However, these two task types have very different
prerequisites. The first task requires translation between representations in the microworld, while
the equal points task requires transformation of the symbolic representation to reach an equality
requirement between two points. Also, they both represent different ways to actuate the dynamic

properties of variable points.

The presented tasks are examples of how such tasks can be formulated. However, both can be
redesigned to present more or less complex problems and focus on different properties. As such, I
would like to explicate them as types of tasks that invite students to exercise their RC, and as

particular results of the study.
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7 RELATING SCHEME-TECHNIQUE AND REASONING COMPETENCY

In this chapter, I address RQ2:

What are the relationships between lower secondary students’ scheme-technique
duality when solving tasks developed for RQ1 in a dynamic geometry and algebra

environment and their exercise of reasoning competency as justification?

Recall that when evaluating RC, three dimensions are taken into account: degree of coverage, radius
of action, and technical level (Niss & Hgjgaard, 2011, 2019) (see also 0). Coverage pertains to a
competency’s various aspects, such as actively participating in different forms of reasoning. The
radius of action encompasses the diverse contexts in which the competency can be applied, spanning
various domains and social situations. Lastly, the technical dimension addresses the sophistication
of concepts, theories, and methods. In addressing RQ2, the relationships between students’ scheme-
technique duality and these three dimensions of RC are drawn out by identifying differences between
student pairs and the progression of instrumental genesis for an individual student. Relevant results
from papers 3, 4, and 5, as well as additional results, will be presented to draw out these
relationships. Consequently, the wording in RQ2: “for tasks developed for RQ1” can be concretized
to the prediction tasks and the “equal points” task presented in chapter 6. Furthermore, as these
papers examine the scheme-technique duality (Drijvers et al., 2013) through the notion of
instrumented justification (IJ), 1J is elaborated in the forthcoming section 7.1 before presenting

relevant results.

7.2 delve into results concerning the “equal points” task, and 7.3 into results concerning the
“Justified prediction-observation-explanation”. Each draws on results from papers but also presents

additional analysis and results. 7.4 is the second part of the discussion, answering RQ2.

7.1 THE SCHEME - TECHNIQUE DUALITY AS INSTRUMENTED JUSTIFICATION

IAME is usually applied to analyze students solving a type of task. For instance, in the case analyzed
by Drijvers et al. (2013), a student solved quadratic equations using the CAS tool. Thus, typical for
cases analyzed in IAME, the main goal in students’ schemes is to solve a problem, with associated
subgoals particular to the process. However, the processes of justification differ as the main goal is
to change the epistemic value of a mathematical claim that concerns the solution to a problem or
strategy. Hence, the scheme-technique duality in justification must be reconsidered toward such a
goal. In Toulmin’s argumentation model (Toulmin, 2003), the goal can be considered related to the
element “qualifier”, which indicates the perceived probability of the claim. This is the basis for

reinterpreting the scheme-technique duality using Toulmin’s argumentation model in the creation
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of an analytical tool (see Figure 22) for 1J processes. In MER, Toulmin’s model is usually used to
analyze a finished argument or chains of sub-arguments, while the scheme-technique duality is
expressed in processes. Toulmin’s model is hence adapted to capture the process from forming a
claim to restating that claim, along with a change in the qualifier when using an artifact. This process
involves changing the qualifier from ‘possible’ to ‘more possible’, ‘less possible’, ‘true’, or ‘false’. The
change is obtained by generating data through techniques as evidence to support or refute the initial

claim.

The analytical tool highlights this close relationship between data and techniques, correlating a
technique to the data it produces through connected frames. The schemes (Vergnaud, 1998b) (see
also section 2.5) that direct and organize techniques contain conceptual elements and rules that
regulate actions seen as warrants connecting the data to the claim. These warrants can be inferred

from students’ techniques and verbal expressions (Rezat, 2021).

Figure 22 shows a generic diagram of the IJ analytical tool as an adaption of Toulmin’s model.
In continuous sub-processes, the first uttered claim, along with its qualifier, is noted in the
top right corner in grey, and below is the re-claim with a new qualifier. Finally, the rebuttal
consists of the limitations of the claim, or counterarguments, as in Toulmin’s (2003) original

model.

Current claim:
Qualifier Claim

A 4

Qualifier Re-claim

Techniques Data Warrants

Figure 22 — Adaptation of Toulmin’s model into an analytical tool for students’ instrumented justification

Based on the analytical tool, IJ is described as: “a process through which a student modifies the
qualifier of one (or more related) claim(s) using techniques in a digital environment to generate
and search for data and warrants constituting evidence for such claim(s)” (Paper 3, p. 135; italics

in original).

It is important to stress that IJ complies with the theoretical notions of the IAME, which are still
intact. For instance, epistemic and pragmatic mediations are still considered a part of such processes
and students’ actions are emphasized as oriented toward goals and subgoals, conforming with the

notion of scheme.
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Paper 4 and paper 3+5 have different perspectives on IJ. Paper 4 explores the nature of students’
final arguments in the complete set of data from iteration 2 and 3 of the equal points task (see section
5.3). The overview of students’ arguments is then used in an analysis and discussion of illustrative
cases, concerning the nature of arguments and students’ mediations and goals as related to their RC.
In paper 3 and 5, I investigate singular cases of 1J for in-depth analysis of the processes. Hence, the
papers provide different types of results to identify relationships between students’ scheme-

technique duality in IJ processes and RC.

7.2 MEDIATIONS AND TECHNIQUES EMERGING FROM THE EQUAL POINTS

TASK

In the following section, perspectives of paper 4 are addressed. First, some results from paper 4 and
additional data are presented. Then through analyzed I draw connections between students’

mediations in the IJ processes, their goals and techniques to the three dimensions of RC.

7.2.1 Results concerning student’s justifying solutions

The first set of results stems from paper 4. Table 3, showing students’ answers to the equal points
task is found below. The answers are grouped according to the final argument (question numbers
are correlated with how they are presented in subsection 6.3.2). The phrasing of the arguments are
presented in a condensed form, which allows grouping similar arguments. The grouping provides an
overview of the number of student pairs that engaged in justification processes about their solutions
and the nature of their final arguments. It appears from Table 3 that only some students justified
their solutions. It is not evident, however, how different pairs of students progressed throughout the
task, which could provide a more comprehensive understanding of how they exercised their

reasoning.
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Table 3 - Grouped student answers for the equal points task from third iteration and the nature of their
justification referring to either A) an algebraic relationship, P) phenomenological impressions, or N)
numeric information

Grouped student answers, n = 18 pairs n Nature:
pair(s) AN, P
1) Can A1 = B and when? (Yes, when s = 1). Justify your answer.
Yes, when s = 1, as B = (s,1) and A1 = (1,5), and when s is one, they are both (1,1) 2 A
Yes, when s = 1 because then both points are (1,1) 1 A
Yes, when both coordinate sets are (1,1), no justification 3 -
Yes, as the points cross each other 1 P
Yes, when s = 1, no justification 3 -
Irrelevant answer 7 -
No answer 1 -
j) Can A2 = B and when? (No). Justify your answer.
No, as A2 is always one below A1 because of “the -1” (and B = A1) 2 A
No, as there will always be one point that has a distance to the intersection when the other one is at 3 P
the intersection
No, they are never at the same place at the same time 1 P
No, no justification 4 -
Irrelevant answer 7 -
No answer 1 -
k) Ifyou change the x-coordinate of A2, is it then possible for A2 = B?
e Ifyes, when and why? (Yes, more solutions, e.g., if A2 = (2,s—1) and s = 2)
e  Ifno, why not?
Yes, when A2 = (2,s-1), because then both points can have the x-value of 2 when s is 2 2 A
Yes, when A2 = (2,s-1), because then A2 and B have the same distance to the intersection of the 1 P
trajectories
Yes, when A2 = (2,s-1), because A2 and A1 are then on different trajectories 1 P
Yes, when A2 = (2,s-1), no justification 6 -
Irrelevant answer 7 -
No answer 1 -
1) Ifinstead, you change the y-coordinate of A2, is it then possible for A2 = B without A2 = A1?
e Ifyes, when and why? (Yes, e.g., A2 = (1,2s-1) or A2 =(1, -s —1))
e Ifno, why not?
Yes, when A2 = (1,2s-1), no justification 1 -
No, because B always has a distance to the intersection of B and A2’s trajectories when A2 is at the 2
intersection
No, because they are equal in (1,1) where A1 = B, and we cannot find a solution where A2 does not 4 A
equal A1
Yes, when A2 = (1,51) or A2 = (1,5), no justification 2 -
No, no justification 1 -
Irrelevant answer 7 -
No answer 1 -

Table 4 presents additional data for students who justified their solutions to at least one question.
Each pair’s answers and justifications are color-coded as follows: ,

, wrong answer, phenomenological based justification, algebraically based justification.

By considering justification of an algebraic nature as more complex than those of a
phenomenological nature, the student’s exercise of RC in the task, across all questions in the equal

points task, can be qualified. In the table, the pairs of students are arranged according to their
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exercise of RC. Pair 1, to the far left, exercises the least developed RC, while Pair 7, to the far right,

exercises the most developed RC.

Table 4 - The answers and arguments of justifying students in answering the equal points task iteration
, wrong answer, phenomenological based justification,

3. Codini:

>

always has a
distance to
the
intersection
of B and A2’s
trajectories
when A2 is at
the
intersection

Pair # | Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7
Question/
answer
ijj)CanA1=B | Yes, when Yes, when Yes, when | Yes, when | Yes, when
and when? s=1 s=1 s=1 s=1 s=1
Justification | not justified not justified not justified As the points | because then
cross each | both points
other are (1,1)
jJCan A2=B | No No No No No
and when?
Justification | There will | not justified There will | No, they are There will
always be always be | never at the always be
one point that one point that | same place at one point that
has a has a | the same has a
distance to distance to | time distance to
the the the
intersection intersection intersection
when the when the when the
other one is other one is other one is
at the at the at the
intersection intersection intersection
k)Can A2=B | Yes, when | Yes, when | Yes, when | Yes, when | Yes, when | Yes, when | Yes, when
and when? A2= (2,s-1) A2=(2,s-1) A2=(2,s-1) A2=(2,5-1) A2=(2,5-1) A2=(2,s-1) A2=(2,s-1)
x-coordinate
Justification | not justified not justified Because A2 | not justified Because then
and A1 are A2 and B
then on have the
different same
trajectories distance to
the
intersection
of the
trajectories
I) Can A2=B | Yes No No No No
and when?
y-coordinate
Justification | not justified Because B Because B

always has a
distance to
the
intersection
of B and A2’s
trajectories
when A2 is at
the
intersection

7.2.2 Analysis of goals, mediation and techniques and their relationships to RC

The analysis points to differences between the seven pairs, which is then related to one of the three

dimensions of the RC to establish relationships between students’ IJ processes and the RC.
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Based on Tables 3 and 4, the following three analyses explore relationships between students’ goals

in the mediation of artifacts in IJ processes and their RC.
Goal of tool use as related to degree of coverage

The close relationship between RC and problem handling in justification (see section 2.3) is

significant in the following analysis.

In the justification of a solution, but also during the problem-solving, students enter 1J processes.
Thus, in 1J there is an interplay of both problem handling competency and RC. Delineating which
processes relate to which is significant to provide an answer to the RQ. Drawing on the notion of
schemes that organize goal-oriented activities (Vergnaud, 1998b), the two competencies can be
delineated with respect to the goal of the student’s activity, as either reaching a solution to a given
problem or changing the epistemic value of a claim stated during the problem-solving process or as
a solution. Some of the students engage in pragmatic and epistemic mediation toward the goal of
problem solving, but rarely or never toward justifying their solution. Hence, they provide no, or only
very few, justifications for their solutions, e.g., Pairs 1 and 2 in Table 4. These two pairs are students
who can solve most questions but not necessarily justify their answer. They might exercise
justification during their problem solving, but we cannot conclude that they do based on the results.
However, we can say that the students who justify their solution display a more developed degree of

coverage than students who do not.

As the degree of coverage is the aspect of RC that students exercise, we can consider students’ degree
of coverage in relation to their goal of using an artifact. The goal must be aimed at changing the
epistemic value of a claim within a problem-solving context. It follows that especially in justification

processes, students must shift their goal from problem-solving towards justification.
Pragmatic and epistemic mediation as related to radius of action

This analysis identifies differences in students’ mediations of artifacts in the algebra view and the

graphic view, which is then related to the radius of action of RC.

In order for students to understand how their techniques influence the dynamic behavior of variable
points, they must comprehend the how the representation of the objects in the graphic view relate
to the variable points in the algebra view. This comprehension requires epistemic mediation of both
the graphic view and the algebra view. In general, for students to put forward arguments that relate
algebraic properties to the representation in the graphic view, they must be able to use pragmatic
and epistemic mediation of both the graphic view and the algebra view toward the goal of

justification. The results in Tables 3 and 4 show that only a small number of students connect the
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phenomenon they observe in the graphic view to the coordinate set and the algebraic expressions in

the algebra view regarding their solution. Pairs 6 and 7 do so most consistently of the seven pairs.

The students who primarily present phenomenologically natured arguments (Pairs 3 and 4) mostly
attain epistemic mediation of the graphic view. The input field and the slider tool in the algebra view
are only used to produce data, so the students only attain pragmatic use of the algebra view. This is
further nuanced by two cases of phenomenologically natured arguments, also presented in paper 4.
They differ by the fact that in one case, students justify with regard to the intrinsic properties
(Lithner, 2008) of the task, where the students in the other case do not. Consider the differences in

the following two examples, both in the context of question K.

Pair 5: “Yes, A2 = (2,s-1), because then A2 and B have the same distance to the intersection of the

trajectories.”
Pair 3: ‘Yes, when A2 = (2, s-1), because then A2 and A1 are on different trajectories.

The argument of Pair 5 considers the intrinsic properties, such as equality of A2 and B at their

intersection of trajectories, and indirectly relates s-1 to A2’s distance to that intersection.

Pair 5’s justification indicates that students understand that the constant in the coordinate
set corresponds to the position of the trajectory of the point, but they fail to relate it to

equality, in general and between the relevant points B and A2. As argued in paper 4:

The next step is for the students to instrumentalize components of the algebra view
for justification. Or in other words, they must evolve their use of the algebra view to
also encompass epistemic mediation for the goal of justifying their answer. In that
sense, some of the justifications that rely on phenomenological experiences can be a

steppingstone for students exercising their RC in the algebraic domain (p.30).

On the contrary the argument of Pair 3, though also phenomenological in nature, does not relate to
intrinsic properties of the task. Thus, even though the students do refer to the coordinate set, these

students struggle to identify the core concepts of the problem and exercise a less developed RC.

Finally, Pairs 1 and 2 mostly did not justify their solutions. It is, however, possible that they have a
pragmatic mediation toward justification. If considering their solution as evidence, they are
performing verification, which is a pragmatic use of the algebra view and graphic view toward the

goal of justifying (elaborated in following section).

By this analysis, we can draw out differences in students’ mediations of the graphic view and algebra

view.
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e No epistemic mediation toward the goal of justification. Possibly, there is pragmatic use of
the algebra view and graphic view toward the goal of justification, such as verification.

e Pragmatic mediation in the use of artifacts in the algebra view, but epistemic mediation of
the graphic view toward the goal of justification. This is further nuanced by the mediation
regarding intrinsic properties or not.

¢ Both pragmatic and epistemic mediation of the algebra view and graphic view.

The radius of action relates to the situations and domains students exercise the competency in.
Hence, delineating IJ during problem-solving and justification of the solution is related to radius of
action. Considering the different views of GeoGebra as different contexts, i.e., the graphic view and
the algebra view each representing different mathematical domains, students’ pragmatic and

epistemic use of specific artifacts in different views relates to the radius of action of their RC.

Finally, there are nuances of students’ epistemic mediations. In IJ processes, pragmatic mediations
are the production of data through techniques, and epistemic mediation is the interpretation of data
through warrants. The quality of the epistemic mediation depends on whether the mediated involves
intrinsic properties. This is, however, related to students’ technical level, which I analyze in the

following section.

7.2.3 Students’ techniques in the exercise of RC

Up until now, the analysis of student activities and their goals, along with their mediations, has been
conducted on the basis of Tables 3 and 4, and in relation to the degree of coverage and radius of
action. The third dimension, which is the technical level, requires data on the specific techniques
used. To maintain the accuracy and relevance of the analysis, the results related to this dimension

are presented in a separate section. Further analysis will be provided after this presentation.
Additional findings

Describing students’ techniques of both the input field and slider tool provides further evidence of
how access to construction and manipulation of algebraic expressions in conjunction with the slider
tool relates to students’ RC. I focus particularly on question K and L of the equal points task, as they
involve techniques in the input field of the algebra view in combination with the slider. Table 4
presents sequences of techniques, considered as the generative aspect of schemes (Vergnaud,

1998Db), across the seven pairs.

For question K, “Can A2 = B if you edit the x-coordinate of A2?”, students must change the numeric
value to either 2 or s. By scrutinizing which techniques students employ to reach the solution, and in

some cases a justification, the following sequences appear:
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Teva: Edit the value of x-coordinate to 2, drag slider for verification, drag slider for IJ (n=4)

Tev: Edit value of x-coordinate to 2, drag slider for verification (n=2)
Tr: Imagine editing the value of x-coordinate to 2 (n=1)

In Table 5, the sequences of techniques are put in relation to the student pairs in Table 4.

Table 5 — Techniques of 7 pairs of students answering question k). Coding: X
, wrong answer, phenomenological based justification, H

Pair# | Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7

Can A2=B? | Yes, when | Yes, when | Yes, when | Yes, when | Yes, when | Yes, when | Yes, when

trajectories

x-coordinate | A2= (2,s-1) A2=(2,s-1) A2=(2,s-1) A2=(2,s-1) A2=(2,s-1) A2=(2,s-1) A2=(2,s-1)
Technique | Ty Tg, v T v,s Tg,v T v,s Tg,v,s T v,s
Justifi- | not justified not justified Because then | not justified Because then
cation A2 and A1 A2 and B
are on have the
different same
trajectories distance to
the
intersection
of the

For question L, “Can A2 = B if you change the y-coordinate of A2?”, a successful technique is to

multiply with a coefficient of 2 without deleting the term. By scrutinizing which techniques the seven

pairs of students in Table 4 employ to reach the solution, and in some cases a justification, for

question L, the following sequences appear:

Tr,v,J: Repeatedly edit the term at random and drag slider for verification. Drag slider for IJ

(n=5)

T-r,v,5:  Delete the term and repeatedly edit the coefficient by approaching one, drag slider for

verification, drag slider for IJ (n=1)

T-r,co,v:  Delete the term and repeatedly edit the coefficient by approaching one, drag slider for

verification (n=1)
Te,v: Keep the term and edit the coefficient, drag slider for verification (n=1)

In Table 6, the sequences of techniques are put in relation to the student pairs in Table 4.

Table 6 - Techniques of 7 pairs of students answering question 1). Coding: ,
, wrong answer, phenomenological based justification, H

Pair# | Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7
can A2=B? | Yes No No No No No No
y-coordinate
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Techni- | Tt o 1y | Trvy Tr,v, T v,y Trcotve | Trv Trv.
que(s)
Tev

Justification | not justified Because B Because B
always has a always has a
distance to distance to
the the
intersection intersection
of B and A2’s of B and A2’s
trajectories trajectories
when A2 is at when A2 is at
the the
intersection intersection

Analysis

As in the previous two analyses, I will identify differences between the pairs of students, in this case

concerning students’ use of techniques, and point to relationships to the technical dimension.

In order to solve question K, the required technique is well within the students’ capabilities. Table 5
shows that all students who answered the question provided a correct solution by changing the x-
value to 2. The only difference between the pairs lies in the use of the slider. All but one pair used it
for verification, while four pairs used the slider to justify their solution. Obviously, the students who
use the slider for justification have a more developed RC than those who do not. However, this
concerns mediation, which is related to the radius of action. Rather, differences in the technical level
concern the complexity of the techniques the pairs use in the pragmatic and epistemic mediation
toward justification. The students’ answers to question K indicate that determining the correct value
of the constant term is within their technical level. Pair 1 stand out, however, as they only imagine

the technique and do not use the slider for verification.

How can we consider imagined technique in terms of IJ? Imagining data that the technique would
produce can be considered a pragmatic mediation. If the imagined data are based on correct
warrants, it indicates that the technique is so familiar to the students that they do not need to carry
it out. If so, the imagined technique must be well within the students’ technical level of problem-
solving. If the students also consider imagined data to evidence of a claim, in this case that the value
2 in the x-coordinate results in A2 = B when s = 2, then they also imagine verification. In such
perspective, the imagined technique of Pair 1 display some level of technical ability toward the goal
of justification. On the other hand, the pair is not taking advantage of the feedback that GeoGebra

can provide to confirm the results, and do not further justify their answer.

Contrary to question K, students struggle to find a solution to question L. Multiplying with a
coefficient without deleting the term generally appears to be at the limits of the students’ technical

level of problem solving.
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Most students (n=5) are inclined to edit only the term and do not consider other techniques.
Editing the coefficient is outside of their technical dimension for problem solving. The students

who do edit the coefficient (n=2) delete the term first.

The distinction between the pairs’ technical level is less clear in this case, as students struggle to find
a successful technique. Still, multiplying by a coefficient is more advanced than adding or
subtracting. In addition, there is no (visible) coefficient to edit, so the students must have the
knowledge of coefficients to use the technique, whereas the term is already created and can be edited.
However, the students who use the slider for justification, and hence justify the failure of the
technique they used in the algebra view, have a more advanced technical dimension than those who

do not, cf. the sequences Tr,v,; and T-t,c—1v, J.

Verification is part of the sequence of techniques for all pairs, apart from Pair 1 for question K who
only imagine the technique and the solution. Common to Pairs 2 and 4 in question Kis that their
sequence of techniques ends with dragging the slider for verification. The students are taking
advantage of the feedback GeoGebra provides in the graphic view to confirm the solution.
Verification is related to the epistemic value of a claim and is an exercise of RC. In the perspective of
IJ, the students do produce data in support of the claim that that A2 = B when the x-coordinate is 2.
As we know from Hanna (2000), reasoning has different functions; verification is one of them,
explanation is another. It does, however, reflect the difference between pragmatic and epistemic
mediation concerning the use of artifacts. Verification only confirms or rejects with respect to an
expected solution. The student can only consider why through epistemic mediation. The educational
value (Artigue, 2002) of verification is therefore low. As indicated in the analysis of mediation, the
explanatory justifications entail intrinsic properties (Lithner, 2008) and have a higher education

value.

Pairs 2-7 can also be divided with regard to their justification. One group justify their answer by
referring to structural implications of editing the term: “Because B always has a distance to the
intersection of B and A2’s trajectories when A2 is at the intersection”, which is a phenomenological

justification.

The other group justify based on the failure of producing a solution where A2 = B: “Because they are
equal in (1,1) where A1 = B, and we cannot find a solution where A2 does not equal A1”. This is an
algebraic justification. In this case, the phenomenological justification is more advanced than the
algebraic. Even though both justifications refer to equality as related to the intersection of
trajectories in (1,1), the phonological justification relates the applied technique to the distance to the
intersection. Hence the evidence for their claim is the structural implication of the technique they

used. Contrarily, the algebraic justification uses the failure to produce equality as evidence of the
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claim. In this case, therefore, the phonological justification is more sophisticated than the algebraic

justification.

Based on the analysis, there is no correlation between the use of a particular technique by students
in the algebra view and the sophistication of the justification they can produce. It is possible that
students can use a technique successfully for problem-solving but not for justification, and vice versa.
The slider is a crucial tool in instrumented justification, and students’ use of it alternate between
verification and justification, which reflect pragmatic and epistemic use respectively. The technical
level of students’ exercise of RC in 1J is, therefore, related to the sophistication of the justification
that the student can consider a used technique, rather than the complexity of the technique itself.
This highlights the central importance of using the slider to produce data and interpretation through

warrants in the students’ exercise of RC in 1J processes that include the algebra view.

7.3 INSTRUMENTAL GENESIS RELATED TO RC IN PREDICTION TASKS

In Paper 5, we meet the pair Rio and Lev and explore their IJ process for the first prediction task,
capturing their progression through three different techniques: plotting and dragging singular
points, tracing points as trajectories of variable points, and drawing trajectories with the pen tool.
Their progression of techniques and Rio’s conceptual development that unfold in their IJ process is
most interesting as a minute window to an instrumental genesis process (Trouche, 2005) in its very
beginning. As argued in paper 5, early instrumental genesis is characterized by unstable schemes
with irregular behavior, incorrect theorems-in-action, and inefficient rules-in-action that, over time,
will stabilize into an invariant behavior. This is rarely addressed in studies that search for and
describe the invariant behavior in students’ developing schemes (e.g., Roorda et al., 2016) or patterns

in schemes across groups (e.g., Pittalis & Drijvers, 2023).

Lev and Rio also participate as a pair in iteration 3, providing the opportunity to follow their

instrumental genesis across several prediction tasks.

In this section, I portray how Rio’s instrumental genesis progresses in the second prediction task of
iteration 2, and the prediction tasks of iteration 3. His instrumental genesis provides a context to

discuss how instrumental genesis in IJ processes is also reflected in students’ RC.
Rio’s justified prediction, test and explanation of D = (s,s)

Rio’s and Lev’s solution to Q1-3 of the third set (see Figure 18) is analyzed using the 1J model
introduced in paper 3 and 5. As in paper 5, Rio is the predominant solver and the most articulate,
whereas Lev is a silent observer. Rio is controlling the computer. It is his IJ process and instrumental

genesis that we can consider.
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In the analysis, I refer to warrants from paper 5, where the label WV covers warrants concerning
variables, and WP are warrants concerning ordered pairs or points in the coordinate plane. In
transcripts, techniques and gestures are given in square brackets and clarifying comments are given

in round brackets.

In the first IJ subprocess (see Table 7), Rio forms the prediction in subprocess 1a as Claim 1 (Figure

24), justifies it in subprocess 1b (Figure 23), and forms a written argument.

In the second 1J subprocess, Rio and Lev test the prediction and adjust their prediction leading to

claim 2.

Table 8 and Figure 25).
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Table 77 — Instrumented justification sub-process 1a and 1b

We know that D can only be called (a number, the
same number). This means that D, cannot be called
(2,1), but can be called (3,3). That’s why D moves
like this.

1 Rio [Places point in (1,1) with point tool] & / u
i)
2 Rio It changes like this [picks pen tool]
3 Rio [Draws trajectory from (1,1) — (0,0) — (5,5)] @ R
& il
4 Rio Agree?
Rio Because when s is four, then it is also four here
[moves cursor to 4 on y-axis, then to (4,4), and then
to 4 on x-axis.]
6 Rio Drags canvas down and continues to draw a
trajectory from (5,5) — edge of view at (6,6)] So, it
goes on like this, do we agree?
7 Rio It’s (s,s). So, if s is zero, it is (0,0), (1,1), (2,2) [while
pointing cursor at positions].
8 Rio Mumbles (inaudible) [Selects the point in (1,1) and
then deletes it]
9 Rio Reads answer guide and writes:
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Qualifier:

Claim 1: D move as drawn: (0,0)
Possible — (5,5) (infinitely)

Technique

Data

Warrant

Pick a value for s and
plot peints with the
peint tool

If s =1, then D = (1,1)
represented by points in
the coordinate plane

WP1: Ordered pairs of numbers
correspond to the x-coordinate
and y-coordinate of a point in the
coordinate plane

WV1: A variable should take a
random value

WV2: A variable represents the
same value wherever it appears
within the same problem

Draw the trajectory of
point with pen

Drawn line for D’s
trajectory:

[(1,1)—(0,0),

(0,0) — (5,9)]

WVT*: The variable can increase
infinitely and decrease to 0

WP6*: An ordered pair with a
variable corresponds to a set of
points in the coordinate plane

* The original WP6 and WV7 also consider a limit

Figure 24 - Instrumented justification sub-process 1a through the lens of the analytical tool

Qualifier: possible Claim 1
(0,0) > (6,8) (infinitely)

: D move as drawn:

Qualifier:

Re- Claim: itis (0,0), (1,1}, (2,2)

more possible

is (0,0), (1,1), {2,2) [while
paointing curser at
paositions]

{line 7)

Technique Data Warrant
Draw the trajectory of| Because when s is four, Wv2
point with pen then it is also four here

(Line 5)
Moves canvas and [(56,5) — edge of view ] Wv7*
draw the trajectory of WP6*
point with pen

It's (s,s). Soif s is zero, it W2

Delete plotted point

N
thecoordinateplane

WP1 is irrelevant

* The original WP6 and WV7 also consider a limit

Figure 23 - Instrumented justification sub-process 1b through the lens of the analytical tool
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In the second IJ subprocess, Rio and Lev test the prediction and adjust their prediction leading to

claim 2.

Table 8 - Instrumented justification sub-process 2

10 | Rio | Construct D = (S,S) and drags slider for S back and
forth.

11 | Lev | Exciting

12 | Bot | Observe the movement of D moving (-5,-5) < (5,5)

13 | Rio | Actually, we did not quite say that.

=
L]

14 [Scrolls back to the GeoGebra app used for the @

prediction and draws (0,0) — (-3,-3).]

N I TRERE / TARST JN0ER RNy 13E: TRUs: TRURt FRUNE I0et TUER:

15 | Rio | Otherwise, it does as we thought

Current claim:
Qualifier: more possible Claim 1 : D move as
drawn: (0,0) — (8,8) (infinitely)

Qualifier: Claim 2: D move as drawn from
True (-3.-3) < (6,8)
Technique Data Warrant
Construct variable | D moves on trajectory from WV8: The variable can infinitely
pointin the input line | (-5,-5) <> (5,5) increase and decrease Rebuttal:
Actually, we
Drag slider WP7: An ordered pair with a did not quite
variable corresponds to an infinite say that.
set of points on a trajectory in the Otherwise, it
coordinate plane does as we
thought
Draw the trajectory of | [(0,0) — (-3,-3)] wvs
point with pen WP7

Figure 25 - Instrumented justification sub-process 2 through the lens of the analytical tool
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Rio’s instrumental genesis progresses toward drawing the prediction with a pen tool. He starts by
plotting a point in (1,1), which is the very same position he regarded as the “staring point” in the first
prediction, presented in paper 5. He then continues to draw from this point toward zero, and then
toward (5,5) at the edge of view, implying that it continues infinitely in a positive direction. This is
coherent with warrants from the previous prediction. Rio then deletes the plotted point. This can
indicate that he no longer considers points and warrant WP1 relevant to the prediction. Rio’s

drawing scheme for predicting variable points is stabilizing.

Another indication of Rio’s scheme at these points is that he does not prolong the trajectory of the
prediction into the negative space prediction in subprocess 1a and 1b, similar to the prediction in
paper 5. Therefore, although Rio did eventually extend the trajectory into the negative region in the
paper 5 prediction, Rio has not fully accommodated WP7 and WVS8 into his scheme yet. In this
second prediction task, he is confronted with the trajectory of A2 also moving into negative space in
the test, and he adjusts the prediction accordingly. Concerning RC, negative values are not fully part
of Rio’s technical dimension, and Rio uses numeric examples to justify the generalized pattern of
movement. In the written answer, however, his prediction concerns properties of the variable s, as it
reoccurs in the ordered pair. In addition, he shows both pragmatic and epistemic mediation of the

graphic view and the algebra view toward justification.

Rio’s justified prediction, test, and explanation of A1 =(1,s) and A2 = (1,s-1)

One and a half year later, in iteration 3, Rio and Lev are once again pairing up. As time has passed,
they have possibly progressed in both competencies and conceptual knowledge. To be concise, I
merely describe their IJ process in predicting, justifying, and testing A1 = (1, s) and A2 = (1, s-1). See

the task in Figure 20 and Appendix B.

In predicting the dynamic behavior of both A1, the pair uses the pen tool for drawing the trajectory
in the coordinate plane, including negative values. This time, the drawing shows the marks left as

they mimic how the point will continually move back and forth along the y-axis.
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In the prediction of A1, Rio claims that “it can only move up and down along the y-axis” and justifies
this claim thus: “because it is only the y-value that varies”.

PP P B2 N o[ )P ARNIE R

Figure 26 - Lev and Rio’s prediction of A1 =(1,s)

In iteration 3, the students are also asked to draw the trace of the points. This confuses Rio, who
argue that point A1 moves infinitely. After testing point A1, Rio realizes that as the variable is
controlled by a slider, it is limited to [-5, 5]. Rio then argues that since the y-coordinate is one lower
for A2 than Az, so is the trace. They do not draw the traces but construct and test A2 to verify the

claim.

The 1J processes in the third iteration indicate a stabilization of Rio’s drawing scheme for predicting
variable points. The are no points used in the prediction, and the drawing also expresses the
oscillating behavior of dynamic points. Initially, the scheme includes the warrants WV8: “The
variable can infinitely increase and decrease”, and WP7: “An ordered pair with a variable
corresponds to an infinite set of points on a trajectory in the coordinate plane”. Those warrants are
challenged by the focus on traces in the third iteration. Hence, Rio must adjust his scheme for
predicting variable points to include the fact that the variable has the limits [-5, 5], and that such
limits are particular to the artifact and differ from mathematical theory. In doing so, Rio’s aids and
tools competency becomes relevant to him, as he can distinguish between properties specifically

related to the tool in use and general mathematical theory.

As for RC, Rio has progressed. His justification no longer includes numeric examples, the properties
of the variable as a generalized number is considered sufficient. In addition, the negative space is
included effortlessly. This indicates a development in the technical dimension as the sophistication
of the argument has advanced. Rio is still able to use both pragmatic and epistemic mediation in
relating the graphic view to the algebra view in the test phase, which provides the opportunity for

Rio to progress his scheme.

112



7.4 DISCUSSION, PART 2: RELATING THE SCHEME-TECHNIQUE DUALITY TO
STUDENTS RC

This chapter elaborates on the relationships between the three dimensions of RC and students’
scheme-technique duality in instrumented justification. In response to the research question, the
relationships are summarized and discussed in relation to existing research on justification, the use

of digital technologies, and student progression in RC in IJ.

The degree of coverage relates to students’ active participation in IJ processes. Active participation
implies a shift in students’ aim, from problem-solving toward changing the epistemic value of claims
facilitated by a digital artifact. Such change is obtained by finding and generating data and warrants.
By defining 1J processes, the study contributes with an aspect of RC concerning a concrete form of
reasoning. Furthermore, it suggests distinguishing between the mathematical competencies of

students working with digital tools by determining the goal of each student’s activity.

The radius of action has several relations to students IJ processes. Firstly, it refers to the range of
tasks for which students engage in 1J. Prediction tasks and the “equal points" task are examples of
the breadth of tasks. Secondly, it involves the contextualization of claims that are being justified.
Students engage in IJ by either regarding claims formulated during problem-solving or claims that
relate to proposed solutions to mathematical problems. Thirdly, it encompasses the variety of
artifacts within the software that students can use for IJ within and across various mathematical
domains. Using artifacts for IJ involves the data production through pragmatic mediation and data

interpretation through epistemic mediation.

The technical level means the complexity of techniques used or imagined and the sophistication of
justifications. It is important to emphasize that the complexity of techniques does not necessarily
correlate with the sophistication of justifications and vice versa. The techniques are related to
students’ schemes and their experience of the efficiency of both rules-of-action and the artifact itself
(paper 5). Imagined techniques can reflect a mastery of techniques if students can accurately
envision the data they yield. The sophistication of justifications is primarily tied to a student’s grasp
of underlying concepts and intrinsic properties, as expressed through warrants. Secondarily, the
nature of the justification as either phenomenological or knowledge-based (in this case algebraic
knowledge) also influences the quality of justification. It is worth noting that in an educational
setting, the level of sophistication of verification is comparatively lower than explanatory
justification. Therefore, students who use the slider tool for both verification and justification
exercise a higher technical level compared to those who only use it for verification. This underscores
the importance of a student’s radius of action when employing the slider tool in conjunction with

other artifacts from the algebraic view.
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In IJ processes, students’ conceptual knowledge is expressed in warrants when they identify,
interpret, and relate the data to the claim through epistemic mediations, which are related to the
students’ radius of action. Furthermore, the sophistication of justification also relates to students’
conceptual knowledge, which concerns the intrinsic properties to qualify the mediation and how they
are used in inference between theorems-in-action. Here we see how two dimensions, the radius of
action and the technical level, are related through students’ epistemic mediation expressed in
warrants. This relationship is in accordance with IAME, where students’ knowledge of concepts, as
well as artifacts, is considered influential to their use of a tool (Trouche, 2005), and it concerns the

scheme-technique duality.

Recognizing the connection between students’ scheme-technique duality and the three
dimensions of RC leads to an important inquiry: How can we aid students in developing their
RC in 1J processes? To address this, I will explore different perspectives on students’

advancement in 1J, some of which stem from issues raised in the papers.
In paper 5, I address the critical issue concerning students’ conception of variable points:

...the translation of representation, such as the one-to-one mapping of terms, which
Duval (2006) problematised in relation to dynamic environments. In this case, how
do the students perceive A and B in the final prediction? Do students perceive A and
B as particular points that move, or have they objectified A and B as structural
patterned movement or, possibly, a hybrid of the particular and generalized? Such
questions could be addressed by observing the students’ progression in the prediction

of other variable points. (p. 24)

Students’ development toward a generalized conception of variable points in the exercise of RC
concerns their technical dimension. By analyzing Rio’s instrumental genesis throughout the
prediction tasks, there are three stages in the conceptual progression from a discrete to a continuous

understanding of variable points.

At the initial stage, students begin by assigning a value to the variable and creating individual points
that can be manipulated across the coordinate plane to assume other values of the variable. This
scheme, with its discrete notion of variable points, uses numerical values as data to support a claim
about structured, patterned movement. This stage is crucial as it allows students to gain experience
with “the one-to-one mapping of terms”, which Duval (2006) highlighted as potentially challenging
for students in dynamic environments. Therefore, the first stage plays a pivotal role in establishing
a coherent understanding of the variable as a generalized number, laying the groundwork for

reasoning about variables.
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As students’ progress, they reach an intermediate stage where the scheme incorporates a hybrid of
continuous and discrete conceptions. This is evident in Rio’s prediction that point D = (s, s). While
numeric positions of points are still used as data, the structured movement is considered continuous
in the drawn trajectories. Rio constructs a point but has no further interaction with it, and the actual
prediction is drawn with the pen tool. However, the justification still involves data on numeric values
and positions. This stage is supported by the graphic representations of variable points, where the
variable point is represented both by an actual point on the coordinate plane and its structured,
patterned movements. Therefore, variable points serve as a stepping stone for students to justify
their reasoning with regard to variable properties, a unique learning opportunity that is not readily

available in traditional pen-and-paper environments (Noss et al., 2012).

The third stage marks a significant milestone in students’ development toward a generalized
conception of variable points. At this stage, students represent variable points by drawing infinite or
limited trajectories. This scheme, with its continuous understanding of variable points, uses the
variable as a generalized number to support a claim about structured, patterned movement. We
observe this third stage in Rio’s prediction that A1 = (1, s). Advancing to the third stage requires the
ability to discern the constraints of the slider tool on the variable points in GeoGebra from

mathematical theory, indicating a deeper understanding of the concept.

In instrumental genesis, the student’s knowledge of an object and its artifact influences the
progression of instrumental genesis in IJ processes, which also leads to a progression in the student’s
conceptual understanding and RC. In paper 5, I demonstrate how instrumental genesis in IJ
processes is advanced due to the inefficiency of applied rules-of-action (Vergnaud, 1998b) and the
constraints of an artifact, requiring it to be consistent with effective rules-of-actions to produce data.
It is important to note that what is considered efficient or inefficient is relative to the student. To
facilitate the progress of students and support their conceptual understanding, it is necessary to

address this relativity and encourage their progression from techniques they still consider effective.

In the equal points task, many students limited themselves to using only one technique in question
L, resulting in a lack of progression in their instrumental genesis. As explained in paper 4, when
students realize that a technique did not produce equality, they gave up and did not attempt to find
a different solution. This led to the justifications of Pairs 2, 4, 5 and 6 in question L (Table 6). The
question is at the limits of the students’ technical abilities, so how do we support them in progressing,

rather than resorting to one single technique?

From a task design perspective, how can we support students who are at their limits of their technical

abilities in progressing, instead of relying on one technique? On two occasions during classroom

115



experiments, I caught students failing with their technique and urged them to try another technique

by hinting that it is possible for A2 = B, indicating the value of the claim.

Implementing such a solution in a classroom setting would be impractical as it would require the
teacher to closely monitor students in order to intervene at the appropriate time. Nevertheless, the
approach demonstrates that indicating the epistemic value of a claim can prompt students to reflect
on the inefficacy of their technique or selection of artifact. From the perspective of task design, it
may be advantageous to include an indicator of epistemic value. Instead of asking “Can A2 = B if you
change the y-coordinate?”, a question indicating an epistemic value could be: “By altering the y-
coordinate of A2, A2 can equal B in a single point. How many solutions can you find? Explain why
your solution(s) lead to equality.” This way of posing a question adheres to the direct wording of the
questions implemented in iteration 3, which directs students’ attention toward fruitful actions
without providing the answers. Additionally, it emphasizes the significance of forming questions,

particularly when learners are grappling with challenging concepts.

Both KOM and TAME have an individualistic perspective, which can sometimes conflict with the
more communal approach to reasoning and justification (e.g., Jeannotte & Kieran, 2017; Yackel &
Cobb, 1996). Typically, arguments are evaluated based on generally accepted truths, or key ideas
within the community, whether it be the classroom or the broader mathematical community.
However, 1J takes a different approach. Instead, it considers the change in epistemic value from the

perspective of the student, aligning with Lithner’s (2008) description of reasoning as

the line of thought adopted to produce assertions and reach conclusions in task
solving. It is not necessarily based on formal logic, thus not restricted to proof, and
may even be incorrect as long as there are some kinds of sensible (to the reasoner)

reasons backing it. (p. 257).

The IJ process places a crucial emphasis on the knowledge and interpretations of the individual
student. This necessitates a student-centered approach that values the student’s rationales over their
adherence to mathematical theory. 1J provides an analytical tool that map how students pursue the
goal of justification while using tools. This student-centered perspective advocates for an inclusive

view of students’ use of tools as an exercise in RC.

Hence, the approach taken by IJ acknowledges the epistemological gap, identified by Sabena et al.
(2014), where teachers may expect a theoretical argument, while students approach their answers
experimentally. The student-centered approach embraces students’ inclination to rely on empirical
or phenomenological knowledge. However, this perspective has its limitations, as it only allows for
justifications based on data and evidence that the students can produce themselves. This

underscores the importance of the communal aspect of justification as a practice. Other positions on
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justification (e.g., Dreyfus, 1999; Jeannotte & Kieran, 2017; G. J. Stylianides, 2008; Wood, 1999;
Yackel & Cobb, 1996) emphasize that certain types of knowledge and arguments are more valuable
than others, and that developing the communal understanding supports the development of
students’ RC. Therefore, when supporting students’ progress in justification, it is crucial to consider

the communal perspective.

The notion that 1J is solely individualistic may be nuanced when considering data analyzed with the
1J tool, which involves pairs of students. This naturally resulted in students sometimes disagreeing
or having to explicate their reasoning and understanding. In applying the analytical tool, this was
handled by labelling warrants as specific to a certain student (examples are found in papers 3 and
5). In those cases, the resulting data are the same for each student, but the warrants by which the
data are perceived and interpreted as evidence differ between the pairs of students and are

negotiated between students.

Thus, concerning the sophistication of justification, the warrants must be challenged and negotiated
in the communal context. Some have suggested that having students observe invariance while they
manipulate objects in DGAEs (e.g., Olive et al., 2010) can potentially progress them from
experimental to theoretical mathematics. However, if the warrants must be challenged, such
observations alone are not sufficient to advance to theoretical justification. Future research on 1J
could explore how students’ warrants can be challenged so that the sophistication of their

justification progresses.

In conclusion, this chapter has shed light on the complex relationships between students’ scheme-
technique duality and the three dimensions of RC in instrumented justification. Moreover, it
highlights the importance of conceptual knowledge and epistemic mediations in students’
development of RC in IJ processes. By identifying, interpreting, and relating the data to the claim
through epistemic mediations, students can express their conceptual knowledge in warrants and

exercise their RC.

Finally, this chapter asks how to aid students in developing their RC in 1J processes. By exploring
different perspectives on students’ progression in IJ and addressing critical issues related to their
conception of variable points, we can better understand the challenges and opportunities for

improving students’ performance in this area.
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8 LINKING RC AND IAME

This chapter addresses RQ3:

Which theoretical links can be established between Reasoning Competency and the
Instrumental Approach to Mathematics Education from the theoretical developments

of the study?

This chapter consolidates the various theoretical considerations explored throughout the study and
elaborates the theoretical developments, struggles and transitions in focus. The objective is to
expound the progression of the analytical perspective (McKenney & Reeves, 2018) of the design
research process. This will consider the broader context of networking for advancing KOM and IAME

by suggesting potential links between the two perspectives.

The chapter falls within four parts. 8.1 elaborates the rationales for the developments of the
analytical tool for IJ, which assist in linking the two frameworks in a networking perspective. 8.2
describe the development an analytical tool, and 8.3 elaborate on further refinements of this tool,
including discussions of how the developments are potential links for networking. 8.4 are the final
part of the discussion, addressing the research question and revisiting notions from the theoretical

framework.

The theoretical developments are illustrated progressively, and the reader should be aware that each
illustration only conveys a particular focus at a particular moment in progression to visualize the

points made.

8.1 A NEED FOR AN ANALYTICAL TOOL

In the first iteration of education design research, the need for an analytical tool emerged through a
parallel analysis of the students’ solutions to tasks, operationalizing the IJAME and the KOM
framework. A parallel analysis means to apply (at least) two different theoretical perspectives to the
same set of data and discuss how each perspective illuminates the research problem and relates to
the other one (Maracci, 2008). It is a method within the coordinating and combining categories of
NT strategies (Prediger, Bikner-Ahsbabhs, et al., 2008).

The aim of the parallel analyses was to capture students’ work with tools in justification, and the
hypothesis was that the students tool use would differ according to competencies. However, such
difference did not emerge in these analyses, emphasizing the need for developing the analytical tool
that accentuated justification processes. The following subsection 8.1.1 argues this point by

presenting a parallel analysis as a departure for discussing the need for an analytical tool.
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8.1.1 An example of a parallel analysis
First, I describe the case subjected to a parallel analysis, and then, how KOM and IAME were

operationalized in this analysis.

The case involves a pair of students working on one of the explorative tasks presented in Chapter 6,
Figure 13: “Relationships between lines”. Figure 27 includes question 4 and 5 of the task and shows
the state of the GeoGebra app with which the students were answering the questions. The utterances

were transcribed and their interaction with the tool described.

Q4) Is it true that CD always will be
. three times the length of AB? Explain
© A=(0.2 ’ why this might (not) be true. What is

Point

D9
QO B-= (1, 2) . . your argument?
: ._.f Q5)
® C = (x(A),0) : Construct a line EF that is always half
— (0,0) of CD. Argue why your solution is
correct.
D = (x(A)+ 3 AB,0)
O 'C 'D
— (3,0)
Segment

f = Segment(A, B)
©

-1

g = Segment(C, D)
©

— 3

+
= ,

Figure 27 — The state of GeoGebra as students S1 and S2 answer Q4

In the analysis from the KOM perspective, the competency that students exercised were identified.
Students’ exercise of RC was specified as students putting forward claims and justifying them by
drawing inferences, thereby altering the epistemic value of their claims (Duval, 2007). Hence, claims
and changes in epistemic values were identified. Further, students’ justifications were characterized
as, e.g., exemplification, generalization, or verification by feedback. This corresponds to an

evaluation of the student’s degree of coverage (Niss & Hgjgaard, 2019).

In the analysis from the IAME perspective, the students’ tool use was described with regard to the
artifact and the activity, such as dragging, typing etc. The tool use was also classified as a case of
either epistemic or pragmatic mediation. It was expected that changes to the epistemic value of a

claim would be related to epistemic mediation (Misfeldt & Jankvist, 2018).

In the following, I present an example of a parallel analysis of a transcript of students’ utterances

with a description of their interaction with GeoGebra.
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Then follows an analysis of each coding, and finally, a discussion of how they relate to one another.

A condensed version of such a parallel analysis is presented in Gregersen (2020).

Transcript

ST1: [Drags point B so that AB is very
short, then a little longer] “What if I do
like this?”

KOM

RC: Reasoning Competency
RepC: Representation
competency

PHC: problem handling

Claim,

epistemic value

Mediation

Pragmatic

Artifact,
object,

activity

Graphic  view,

point, dragging

ST2: Have a look, it is three times as | RC: visual comparison of | CD = 3AB, possible | Epistemic Graphic  view,
long... it is like three pieces... (pointing | segments (example) line segments,
at segments) gestural activity
ST1: Yeah
ST2: Yes, I would like to show that itis | RC: searching for other | CD = 3AB, possible
three, but... inference possibilities than
visual comparison
ST1: The short one is 33 % of the long | RepC: translates from fraction
line to percentage
ST1: Okay, [typing answer] yes, it is | RC: Generalizing based on | CD = 3AB, likely
three all the time. visual comparison
ST2: It should be so easy, and we are just | RC: Searching for inference Epistemic Graphic  view,
not able to find it. [returns to GGB and | possibilities point, dragging
drags point B] (possibly  also
ST1+2: [Both looking at the screen.] RC: Searching for inference algebra view)
possibilities
ST1: I think I worked it out! I think that | RC: Inference drawn between | CD = 3AB, more | Epistemic Algebra  view,
maybe this one here. Because if you look | definition of D and length of CD | likely gestural activity
at D [pointing at point D in the algebra
view] it might be that it is three times
larger than A and B. And it is influenced
by, what is it... I just have to check D
[Drags point B, D moves]. It is Epistemic Graphic  view,
influenced by point B. Yes. And also | RepC: Identifying relationships points, dragging
point A [Drags point A, C and D moves]. | between representation
And this one [ point C]. It is only
influenced by point A.
ST2: Oh, so we see that D is influenced | RepC: Identifying relationships Epistemic Algebra view and
by A and B, and C is only influenced by | between representation graphic view,
A. This is true. Points
ST1: The first (referring to the point E), | PHC Pragmatic Algebra view,
that should be C then? Oh, I think I got points, input
it, are you ready? field,
ST2: We need to do point E and F
ST1: [types () in input field] PHC Pragmatic Algebra view,
input field
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ST2: You need to write E = PHC Pragmatic Algebra  view,

input field

The students then attempt to construct EF by copying the structure of C and D. They discover that the inputs written in the algebra view

are coordinates but fail to construct EF and continue to the next question.

In the students’ exercise of RC, they agree with the claim that CD = 3AB, based on a visual
comparison of AB and CD. ST2 expresses that the visual data are insufficient and searches for other
inference possibilities. First, the student has no luck, so the visual comparison of CD and AB is
generalized to be “at all times”. Then, ST1 notices “3AB” in the definition of D and states that “it
might be that it is three times larger than A and B”. ST1 do seem to use “D” as a label for the length
of segment CD, since D is what varies. The epistemic value of the claim increases each time it is
asserted. Then the students shift to investigating the symbolic representation in the algebraic view
as related to the graphic representation. When the relations are established, the students move on

to question 5 and problem solving. They do not draw conclusions in relation to their claim.

Concerning IAME, the students primarily show epistemic mediation. They use dragging of the end
points of lines to compare the relationships among them and to generalize the comparison. Similarly,
dragging is also used to establish relationships among the representation of the algebra view and the
graphic view. Epistemic mediation of the algebra view is accompanied by gestural activity or verbal
expressions pointing towards information in the algebra view. Once the students turn to question 5,

they interact with the algebra view through pragmatic mediation.

Relating the two analyses, what can we say about RC and tool use? Whenever students exercise RC,
epistemic mediation occurs to obtain information that relates to the claim. The epistemic mediation
occurs in conjunction with dragging, observation of points’ behavior in the graphic view, or
enunciation of information in the algebra view. However, the students also use epistemic mediation
when exercising representation competency, but this time in the context of establishing relationships
between objects. Despite epistemic mediation not being specific to RC, epistemic mediations are
involved in both the formation of claims and changing the epistemic value of a claim. Though it
provides some descriptive qualities (Prediger, 2019), identifying the pragmatic and epistemic
mediation provided little new insight into how the epistemic mediation influenced the epistemic

state of a mathematical claim.

However, the parallel analyses did indicate that the information students obtain through epistemic
mediation, exercising RC or representation competency, concerned different processes. When
exercising RC, the epistemic mediation concerned students’ own inferences toward the change in
epistemic value of a claim, related to goal justification, while representation competency concerns

establishing relationships between constructed objects.
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Therefore, in IAME the exercise of different competencies can possibly be related the goals that
orient students’ instrumented acts and are part of students’ schemes (Vergnaud, 1998b). Figure 28
illustrates the two theoretical perspectives of the parallel analysis with KOM in red, and IAME in
blue. The aspect of justification within RC is understood as an inference that changes the epistemic
value of a claim. The IAME perspective shows the fundamental construct of instrumental genesis
along with epistemic and pragmatic mediation. At this stage of the study, the link suggested between
goals are illustrated with orange text and an arrow illustrating the connection. The arrow connects
students’ schemes that are goal oriented with the change in epistemic value. Such a connection

concerns the relationship “students-activity” in relation to tool use.

Reasonin . _ . :
. A claim with epistemic
competency
value
Inference

Justification Change in epistemic
with various value of claim
forms of arguments

— S ETTTTE——————

Object of

activity
Pragmatic Epistemic
Mediation Mediation

An Instrument = artifact + instrumented action scheme

| 4‘ I
v
. Inst tati
An artifact M A students

Its contains and -— With knowledge
possibilities Instrumentalization and modalities

For a class of situations or class of tasks

Figure 28 - Illustration of theoretical perspectives in the parallel analyses and suggested links. KOM is
red, IAME is blue, and links are orange
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To further understand how this goal unfolds in students’ tool use, it seemed that other notions or
frameworks concerning justification and justification processes were needed, since both IAME and
KOM lack local conceptual elements particular to justification and justification processes. Several
frameworks were considered, and eventually Toulmin’s (2003) model was used. Below, I will briefly

describe how.

Though Toulmin’s model originates from outside of MER, it has a rich use history in reasoning
within MER, but it has also been adapted to other fields, demonstrating its applicability across
sciences. In Toulmin’s model, a claim is a statement made by the speaker, with a qualifier to indicate
its likelihood. Justification of the claim is established through other elements of the argument, such
as data, warrant, and backing. Toulmin’s model is a construct based on an assumption of the
elements that make up arguments. It rests on hypotheses about standards, values, and convictions
in jurisdiction and practical everyday reasoning (as opposed to logical and philosophical standards),
taking into account the complexities and uncertainties inherent in human reasoning. The model’s
adaptability is evident as “certain constant field-elements can be discerned in the way in which
argumentation develops” (Toulmin, 2003, p. 2). Assuming that Toulmin has successfully drawn out

such elements, these must also be present when students exercise RC using tools.

Through close collaboration with Anna Baccaglini-Frank, an analytical tool was developed by
reinterpreting Toulmin’s (2003) model with respect to IAME and KOM. Its development is described

in the following section.

8.2 THE DEVELOPMENT OF AN ANALYTICAL TOOL FOR INSTRUMENTED

JUSTIFICATION

Papers 2 and 3 demonstrate the evolution of the analytical tool for instrumented justification. Paper
2 introduces an initial version of the tool (see Figure 29), while paper 3 showcases the developed
version used in the remainder of the study (Figure 30). The analytical tool and its application is
explained in section 7.1 and in the papers. Here, I address theoretical considerations, elaborate on
the rationale of the development, and highlight their significance in linking KOM and IAME. In
conformance with design research, the tool was developed through a continuous process of

theoretical reflection and retrospective analysis of students’ work.
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Figure 29 - Generalized version of the initial analytical tool, presented at “Matematikdidaktikkens
dag” 2020, Emdrup, KBH (Gregersen & Baccaglini-Frank, 2020)

Current claim:

Qualifier

Claim

A 4

Qualifier

Re-claim

Techniques

Data

Warrants

Rebuttal

Figure 30 — Illustration of the analytical tool for instrumented justification, paper 3

Figure 31 illustrates the theoretical advancements made from paper 2 to paper 3. KOM is represented

in red, TAME in blue, and the analytical tool with elements from Toulmin’s model is represented in

green. Links between elements are indicated in orange. What the illustration also conveys is that

other constructs from IAME are emphasized compared to Figure 28. Note that mediation is no
longer emphasized, and neither is the object of activity.
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Figure 31 - Illustration of theoretical links established in a) paper 2 and b) paper 3. KOM is red, IAME
is blue, the analytical tool is green. Links between perspectives are marked with orange arrows and
text

Paper 2 introduced the analytical tool as justificational mediation (JM), but upon further
consideration, some issues were identified with this description. Mediation “comes from the
subject’s activity being oriented toward the object of the activity” (Rabardel & Bourmaud, 2003, pp.
668-669) and can be either pragmatic or epistemic. However, in applying the analytical tool, the
change of the epistemic value of a claim involves multiple mediations, both epistemic and pragmatic,
oriented toward several objects. The notion of justificational mediation proposes an overarching type
of mediation consisting of multiple other mediations. However, this deviates from the original
conception of mediation and could potentially cause confusion instead of clarity. Instead, in paper

3, the analytical tool leads to the following definition of instrumented justification:

Instrumented justification is a process through which a student modifies the
qualifier of one (or more related) claim(s) using techniques in a digital environment
to generate and search for data and warrants constituting evidence for such

claim(s). (p. 135)

The definition of IJ remains consistent throughout the study. The crucial part is that IJ is a process,

and the analytical tool suggests how to identify this process. In paper 2, this is introduced in the
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reinterpretation of the Toulmin model’s analytical unit, which shifts from a finalized argument to
the process of changing the epistemic value of a claim. This process relates to the qualifier in
Toulmin’s model. In paper 2, we state that “The first utterance of the claim indicates the start of the
JM process, in which the aim is to change the qualifier” (p. 453), and “We recognize such a change

of status of a claim by students’ restatement of the claim accompanied by a new qualifier.” (p. 435).

The adaptation of the analytical unit creates a link to KOM (note the arrow from KOM to analytical
tool in Figure 32), where RC is defined as the production or analysis of arguments that support
mathematical claims (Niss & Hgjgaard, 2019), and considers the process perspective of justification.
Additionally, it recognizes that instrumental genesis is a process. The new unit of analysis affects all
the elements of Toulmin’s (2003) model that originally depicted a finalized argument, and which
now contains several units. For instance, the data and warrant elements incorporate all data and
corresponding warrants produced in the unit of analysis, which collectively leads to the change of
the qualifier. In paper 3, the term re-statement is redubbed re-claim in line with Toulmin’s
terminology. A re-claim may take the form of a partial recapitulation or an indirect reference, such
as “it”. For instance, a statement like “it must be true” is considered a re-claim accompanied by a
qualifier. In paper 3, the epistemic value of a claim is now referred to as a change of qualifier, in line
with Toulmin’s terminology. The significance of the qualifier and how it was derived from the data

are elaborated upon in paper 3:

The qualifier can then be inferred from the student’s actions; for example, a statement
can be uttered with hesitation, or if a student continues to search for data, we can
infer that the student is not yet convinced that the claim is true. The qualifier can

”» o«

change from “possible” to “more possible”, “less possible”, “true”, or “false”. (p. 121)

The advancement in the inferences about qualifiers was achieved by using the tool in a wider range
of student cases, which presented more complex situations where the qualifier was not explicitly
stated. Another adjustment introduced in paper 3 was that most IJ processes consist of multiple
restatements, at times with rebuttals that result in new or revised claims. Thus, the analytical tool

was reevaluated to encompass these more intricate processes as IJ sub-processes.

While paper 2 emphasized the importance of backing as a core component of JM, paper 3

omitted this aspect. In paper 2, we highlighted that:

In the context of JM, we consider the backing to be an explanation of why the warrant
is relevant (Simpson, 2015). Central is, that the aim of JM is to change the status of
the claim, so the backing must explain why the warrant is relevant for generating data
that allows the change in the status of the claim. Thus, the backing becomes

fundamental to the JM process. Currently, we have reached the following formulation
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of backing in JM processes: If the claim is true, I can generate data, within the specific
instrument, that is consistent with the claim. This seems closely related to Vergnaud’s
(2009) notion of theorem-in-action, a sentence that the solver believes to be true, but

that may in fact be false. (p. 453)

However, in paper 3, we no longer analyzed students’ backing, for various reasons. The application
of the backing remains unclear across MER (Simpson, 2015), leading to low replicability of
inferences about student backings. In paper 2, we inferred a backing, which we elaborated as a
possible theorem-in-action: “If the claim is true, I can generate data, within the specific instrument,
that is consistent with the claim.” In this case, the backing acts as a meta-theorem-in-action,
referencing the trustworthiness of digital artifacts and the data they process. In other words, it
concerns student trust in the tool as an instrument consistent with mathematical theory in the
generation of data. However, in hindsight this meta-theorem-in-action was imposed on the
participating students, since they were specifically asked to use GeoGebra. Finally, the nature of
students’ arguments caught our attention in the case we analyzed for paper 3. Altogether, in paper
3, we shifted our focus towards the techniques and generation of data. I will touch upon backing as
a link to KOM in the discussion.

An essential development from paper 2 to 3 was the shift from considering schemes in its generality,
as generative and epistemic aspects, to the use of the scheme-technique duality (note the arrows

from the blue TAME constructs to the analytical tool in Figure 31).
In paper 2, we wrote:

The generation of data is the product of the generative aspect of the schemes used
(e.g., dragging, creating objects on the screen and interacting with them, utterances
and other hand-gestures) that are carried out by students. Warrants are the epistemic

aspect of the schemes used. (p.453)
While in paper 3, we wrote:

A second feature of our analytical tool is that a technique frame appears next to the
data. This is because the main source of data, as students attempt to justify claims in
a digital interactive environment like GeoGebra, is the effect of their use of techniques
(as described in the TIG). The invisible schemes direct and organize actions with or
on the data, but they also contain conceptual elements and rules that regulate actions
(Drijvers et al., 2013). Such rules can be seen in the model as warrants, which are

inference rules that connect the data to the claim. (p. 122)
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An advantage of using the scheme-technique duality (Drijvers et al., 2013), discussed in subsection
2.6.1, is its ability to establish direct correlations between observed techniques, the resulting data,
and the inferred warrants. Considering the analytical tool in Figure 30, the reader might get a sense
of this correlation. The introduction of the duality also emphasizes a double orientation of the
warrants to both direct the generation of new data and interpret the data as evidence for or against

the claim, or even regard the data as irrelevant to the claim.

As such, the scheme-technique duality (Drijvers et al., 2013) provides a pair of concepts to determine
observable interaction with a tool as techniques that are organized by a scheme. Those schemes, in
turn, are also expressed in the warrants that interpret the outcome of those actions and conduct
inferences. By doing so, the analytical tool establishes links to the IAME that allows a clear
identification of how students’ interactions with the tool contribute to the change of the epistemic

values of claims through the generation of data.

8.3 REFINING THE ANALYTICAL TOOL FOR INSTRUMENTED JUSTIFICATION

The preceding section described the development of the analytical tool and discussed how it can link
IAME and KOM. Paper 5 and Chapter 7 in the kappa refines the analytical tool with concern to
components of students’ schemes, mediation, and the three dimensions of RC, establishing
additional links between the RC and TIG. Subsection 8.3.1 focus on the contribution of paper 5 and

the components of schemes, while 8.3.2 focus on mediations and the three dimensions of RC.

8.3.1 The components of scheme

As portrayed above, the 1J tool establishes links to both KOM and IAME through the scheme-
technique duality. Paper 5 elaborates further on the components of scheme (Vergnaud, 1998b), that
is the operational invariants rules-of-action, theorems-in-action about concepts-in-action, and the
possibilities of inference. Those constructs are operationalized in further analysis of an IJ process to

relate students’ conceptual knowledge to their RC which is illustrated in Figure 32.

Central to this is the link between warrants and schemes: “schemes are goal-oriented concerning the
task at hand (Vergnaud, 1997)—in this case, the goal is putting forward a prediction and justifying
that prediction by changing the epistemic value of the prediction. Such activity involves both rules

of-action and theorems-in-action about relevant concepts-in-action” (paper 5, p. 66).

Figure 32 includes the components of schemes. The orange arrows and text indicate how the
components are related to the existing elements of the analytical tool. I will explain these relations

one by one.
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Figure 32 — Links established between the scheme-technique duality and RC through the analytical tool
for 1J. The circle marks the point in the process where warrants interpret data as evidence for or against
the claim, which allows for inference between operational invariants
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Schemes have a component that consists of goals and sub-goals, and which depends on situational
variables (Vergnaud, 1998b). It has already been established that in IJ processes, the goal is to
change the epistemic value of a claim, and KOM describes that this is done through inference. The
subgoals are not elaborated in paper 5, but they could be along the lines of: “Make the trace start

further down the x-axis” or “Explore if and how the new data aligns with the claim”.

Warrants are inference rules that connect the data to the stated claim. In paper 5, those inference
rules are considered as either rules-of-action or theorems-in-action. Rules-of-action, the less
complex of the two, rely on operational invariants. They are the generative aspect of a scheme,
governing and organizing the techniques that students use to generate data in support of a claim. A
defining feature of rules-of-action is their effectiveness. In the context of 1J, effectiveness can be seen
as relating to the data that a given technique generates. This notion of relevance is intertwined with
the perspective that justifications must be grounded in the intrinsic properties of the task. This, of
course, extends to the techniques and rules-of-action employed by students in the IJ process.

Ultimately, the RC in IJ processes also includes student generation of relevant data.

In Figure 32, note the circle formed by the intersection of the arrows between data and warrants.
This intersection is significant because it marks the place where warrants interpret data. From there,
an orange arrow points towards inference possibilities, a component of schemes. Inference is a
defining characteristic of RC, making inference possibilities particularly relevant to study. In paper
5, I argue that the inferences made in IJ processes are between the operational invariants made in
the interpretation of data, and we can draw assumptions about these inferences by considering
students’ warrants. This leads to a more complex component: the operational invariants, which are

propositions about concepts-in-action held to be true (Vergnaud, 1998b).

Paper 5 suggests that warrants that are not rules-of-action can be considered as theorems-in-action.
In 1J processes, those warrants evolve as students produce more elaborate data or realize the

relevance of concepts or properties. As explained in paper 5,

The change in epistemic value occurs through an interplay of producing data and
interpretation through inference between the operational invariants. The inference
allows the production of additional supportive or contradictory data. This cycle

continues until the epistemic value is changed. (p. 69)

As students relate what they see on the screen (data) to what they know (warrants), inference
possibilities emerge concerning concepts-in-action, and those inferences yield warrants, which in
turn allow students to interpret data as evidence for or against a claim. What is particularly beautiful

about these links is that they emphasize the students as initiators of their own development. The
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students, based on their immediate interpretations of the task and situation, generate data from

which they can make inferences that lead to new realizations.

The insights provided by the links in paper 5 shed light on how the epistemic value changes through
the use of a DGAE, as well as how students’ processes can be seen as conceptually based
mathematical inferences. By examining students’ operational invariants and the inference

possibilities between them, we can suggest how students exercise their RC when utilizing tools.
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8.3.2 The three dimensions of the RC and mediation

Chapter 7 examines the three dimensions of RC (degree of coverage, radius of action and technical
level) (Niss & Hgjgaard, 2019) and their connection to various aspects of IJ and the scheme-
technique duality. Hence, it relates KOM to both the analytical tool and IAME’s scheme-technique

duality (Drijvers et al., 2013), including epistemic and pragmatic mediation.

This is illustrated in Figure 33, where elements that pertain to the degree of coverage are marked by
a protractor, the radius of action by a compass, and the technical level by a calculator. In the figure,

pragmatic mediation is represented by a yellow shade and epistemic mediation by a green shade.
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C T F&%
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Change in 5
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Figure 33 — Continuation of Figure 32. Added are the degree of coverage marked by a protractor, the radius of
action marked by a compass, and the technical level marked by a calculator. In addition, pragmatic mediations
are represented by a yellow shade and epistemic mediations by a green shade
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The following section briefly summarizes how the three dimensions correspond to different aspects
of the 1J tool.

Note that the degree of coverage is placed as related to the goal. This is the one link that relates most
directly to KOM’s RC, as the goal is expressed in students’ active participation in IJ processes. Such
an activity is aimed at changing the epistemic value of stated claims, distinct from other goals related

to competencies, such as problem handling, mathematical modeling, etc.

The radius of action is expressed in several elements, some within the 1J process and some within
the IAME. An element within the former is the nature of the claim being asserted, such as a proposed
solution to a problem, a claim concerning a strategy, or techniques to solve it. The latter encompasses
the range of artifacts a students can use for pragmatic and epistemic mediation in IJ processes across
different mathematical domains. In Figure 33, pragmatic mediation is represented by a yellow shade
and epistemic mediation by a green shade. This places the mediation in the processes that unfold
between student’s scheme-technique duality and the processes captured by the 1J tool. Pragmatic
mediation occurs in the production of data through techniques that are governed by rules-of-action.
Epistemic mediation occurs in the interpretation of data, as evidence by warrants, and in the
relations between inference possibilities, the operational invariants, and warrants. Radius of action
hence concerns both forms of mediation, in relation to the range of artifacts the students can use.

Finally, it also concerns the students’ range of tasks or situations for using artifacts.

The technical level is linked to the complexity of techniques used or envisioned. Nonetheless, the
quality of justifications is primarily determined by a student’s comprehension of underlying concepts
and intrinsic properties, which are conveyed through warrants. The quality of justification is also
influenced by the nature of the justification, i.e., whether it is grounded in phenomenological or

algebraic knowledge.

8.4 DISCUSSION, PART 3: POTENTIALS FOR NETWOKRING AND REVISINTING

NOTIONS

The discussion has two parts. 8.4.1 discusses meta-theoretical perspectives toward the potential of

networking and networking strategies for linking KOM and IAME.

8.4.2 discusses the contributions of the links and, hence, revisits some of the notions introduced and

elaborated in the theoretical framing in Chapter 2.

Finally, I discuss potentials for networking based on the theoretical development and the links

established between the two frameworks as potentials for a coordinating strategy.
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8.4.1 Potentials for networking

In networking practices (e.g., Bikner-Ahsbahs & Prediger, 2014), theories are described as close or
distant to each other, depending on the extent of commonality. This section first addresses
commonalities and differences of the two perspectives. This falls within the networking strategy of
comparing and contrasting (see subsection 2.1.1). I draw on the concepts of background theory and
foreground theory by Mason and Waywood (1996) and distinguish between background theory

within or from outside of MER, as discussed in paper 6.

IAME is a theoretical approach that is local in grain size, and that theorizes students’ use of tools in
mathematics education. It has incorporated constructs from the theory of instrumental genesis
(Rabardel, 1995/2002; Rabardel & Bourmaud, 2003) and developed constructs more particular to
MER (Haspekian et al., 2023).

KOM is a medium grain size theoretical framework of hierarchically organized constructs. It deals
with a broad range of topics related to the mastery of mathematics across different age groups and
institutions (Niss & Jankvist, 2022). Thus, KOM and IAME differ in both grain size and scope. Since
this study focuses on the RC, specifically on the aspect of justification, the theory development is

local and aims to shed light on the processes involved in this aspect of RC.

“A fundamental issue for linking two theoretical entities is whether these represent two different
ways of dealing with the same object(s) or phenomena, or whether they deal with different objects
or phenomena” (Niss & Jankvist, 2022, p. 32). KOM and IAME have different objects, but they do
share methodological means, as both concern student behavior as a subject of analysis.
Consequently, the same datasets can be analyzed from both perspectives. Considering the complete
frameworks of KOM and TAME, linking the two can be fruitful in specifying processes associated
with a competency and relating them to different aims of tool use. This can enrich IAME with new
perspectives on types of tasks and situations for tool use. In turn, for KOM, the competencies are
extended to include aspects relating specifically to the use of tools. Linking the two approaches can

thus be “mutually fertilizing” (Niss & Jankvist, 2022) for both approaches.

Both KOM and IAME concern the cognition of the individual. Competencies are considered cognitive
in nature, since they are an individual’s expression of cognition in specific mathematical situations
(Niss & Hgjgaard, 2019). However, Niss and Hgjgaard (2019) clarify that readiness means “an
individual’s cognitive prerequisites for engaging in certain activities” (p. 18) does not have a distinct
theoretical background theory outside of MER. Rather, it is developed as a framework inside of MER,
from what appears to be a grounded theory approach (Vollstedt & Rezat, 2019), as the framework
has emerged from an empirical discourse within a mathematical community, rather than resting on

a scientific theoretical perspective. Instrumental genesis is a cognitive process that unfolds between

135



an individual and an artifact, and IAME draws on the construct of schemes(Rabardel, 1995/2002;
Vergnaud, 1998b). However, acknowledging a socio-cultural perspective with regard to artifacts
(Rabardel, 1995/2002), IAME has a constructivist background theory (Mason & Waywood, 1996).

In this regard, the two theories can complement each other.

Recall that networking can have different strategies depending on its aim and integration. Two of
them are the coordinating and combining strategies (Prediger, Bikner-Ahsbabhs, et al., 2008), which
aims at understanding an empirical phenomenon or piece of data. What sets the two strategies apart
is that combining considers conflicts between the theoretical approaches as a contribution to
multifaceted insights into phenomena, whereas coordinating has different research objects.
Therefore, research aims and methods must be complementary to capture inter-relational variables
(Prediger, Bikner-Ahsbahs, et al., 2008). Taking the differences into account, coordinating is the
most promising strategy. As the links established in this study aim at understanding the data that
have emerged as instrumented justification, KOM and IAME also differ in the objects being studied,
and the analytical tool for IJ suggests which inter-relational variables can be captured between the

two.

Coordinating often results in a conceptual framework but does not necessarily present as completely
coherent (Bikner-Ahsbahs & Prediger, 2014). However, coordinating aims at a high degree of
coherency between well-fitting elements from different approaches. This leads to the question: How
well-fitting is KOM and IAME?

Unlike IAME'’s notion of scheme, KOM categorizes activities and related cognition as particular to
different situations, without capturing cognitive processes. This distinction, while posing the
challenge of linking constructs at different grain sizes (Niss & Jankvist, 2022), concerning different
objects, also highlights the complementary nature of the two perspectives. Hence, IAME and KOM

do not have deviating constructs, which underscores the potential for their integration.

The present study addressed these challenges by adapting Toulmin’s argumentation model. From a
networking perspective, I will now argue that Toulmin’s model, when reinterpreted into the
analytical tool for IJ, can serve as a boundary object (see 2.1.1.5). This entity acts as a bridge between
practices, making the boundaries between KOM’s RC and IAME more permeable. The 1J analytical
tool provides constructs that concretize the RC, which allows for the establishment of links. Star and
Griesemer (1989) argued that a boundary object must be “plastic enough to adapt to local needs”
and “yet robust enough to maintain a common identity” (p. 393). Both are relative matters.
Concerning plasticity, Toulmin (2003) make few assumptions about mathematics or education.
However, in the book Uses of argument, Toulmin (2003) does take a position on standards of

argumentation. He is concerned with what counts as convincing for humans across scientific fields,

136



and he is opposed to viewing argumentation by the standards of philosophies of logic. Though not
completely aligned with mathematical ideals of arguments (that is, logic), this position makes the

model adaptable across scientific fields.

In paper 2, we questioned the robustness of Toulmin’s model: “These stretches seem to be leading
rather far from the initial model, and we wonder how appropriate it might be to still refer to
Toulmin’s model at all, also considering a posteriori how we have sort of “substituted” elements from
the IA to parts of the model.” (p. 458). The primary concern revolves around the shift in the unit of
analysis and its implications. While Toulmin’s initial work did not intend to examine justification
processes that lead to the argument, it is worth noting that these processes must at least include the
components of the final argument. Additionally, these processes necessarily involve the individual’s
role in developing these components, and it is not uncommon in MER to use Toulmin’s model in the
context of reasoning processes (Simpson, 2015). To conclude, whether Toulmin’s arguments model
maintains its identity is debatable, but from a pragmatic point of view, the reinterpretation of the
model into the analytical tool for 1J has proven to be a useful boundary object for understanding
students’ use of tools in justification processes. This has allowed links to be drawn across the RCs of
KOM and IAME.

To summarize, comparing the two frameworks reveals potentials for networking KOM and IAME.
They do not conflict concerning background theory or deviating constructs, and they share subjects
of analysis. There are, however, some issues in linking the two perspectives that must be addressed.
These issues concern the lack of correspondence between constructs, due two differences in objects
and the scope of constructs. This study suggests that networking, at least on a local scale, can be
assisted by a boundary object. Such a boundary object must concretize the given competency in play
and be plastic enough to be linked to IAME.

8.4.2 Revisiting notions in the perspective of the analytical tool for 1J

The parallel analyses yielded limited new insights into the influence of epistemic mediation on the
epistemic state of a mathematical claim. However, they did help establish connections between
students’ goals of instrument use and their competencies. The theoretical connections established
through the analytical tool offer a more comprehensive understanding of how pragmatic and

epistemic mediation are specific to IJ processes.

The processes of mediation can be further elucidated by considering the components of schemes.
Pragmatic mediation occurs in the production of data through techniques governed by rules of action.
It is important to note that the mediation of objects is facilitated by the artifact (Rabardel &

Bourmaud, 2003). In line with IAME, the pragmatic mediation of objects using techniques is not
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solely determined by the student’s own rules-of-action, as is the case with traditional pen-and-paper
tasks (Vergnaud, 1998b). Pragmatic mediation is also influenced by the algorithms inherent in the
artifact. Following Vergnaud’s terminology, we may refer to them as instrumented algorithms-of-

action, some of which align with mathematical theory.

Epistemic mediation plays a crucial role in how students interpret data as evidence through the use
of warrants in the relationships between inference possibilities and operational invariants. This
suggests that students are interpreting instrumented algorithms-of-action into their own theorems-

in-action, advancing their conceptual knowledge.

Recall that the technique-scheme duality was suggested as a pragmatic means to solve a methodical
problem. It was articulated by Drijvers et al. (2013) for analyzing small data sets (either in time or in
a number of individuals) and because of the practical need to discuss instrument use is such cases
from the perspective of IAME. Subsection 2.3.1 discusses the notion of techniques, to be considered
within the background theory of IAME, as the primary perceptual and gestural activities that involve
the mobilization and implementation of instrumented action schemes encompassing all gestures
involved in student activity when using a digital tool (such as hand movements during expressions,
observing an artifact or activity on objects mediated by the artifact, articulation of imagined
activity). Paper 5 suggests that techniques are regulated by students’ rules-of-action related to the
artifact, as rules of action are “responsible for generating behavior based on situational
variables” (Vergnaud, 1998b, p. 229). Revisiting the notion of techniques as the mobilization and
implementation of rules-of-action can clarify how techniques both relate to and are distinct from

schemes.

Another important discussion, the relative invariance of schemes, is rarely addressed in the IAME
literature (Pittalis & Drijvers, 2023). Often, the definition of schemes emphasizes that schemes are
invariant which is recognized in the invariant behavior. However, it does not address the new
situations and tasks for which students have not developed instrumented action schemes, which is a

typical situation in education. It is, however, recognized by Vergnaud (1998a):

Nevertheless students are often faced with situations for which they do not have any
scheme available. Therefore they have no other way but to call schemes in the
neighborhood, to try to decompose and recombine them, in order to form new

schemes, with or without the help of the teacher or other students. (p. 173)

Two conclusions can be drawn from this passage: First, students will decompose or recombine

schemes, and second, this will probably occur with or without the teacher’s involvement.
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In paper 5, I suggest addressing such a situation by analyzing the components of scheme rather than
looking for patterns across similar tasks. This can yield further insight into how students deal with

an unknown type of task, such as the prediction tasks and the equal points task.

When such a situation is addressed, the notion of techniques becomes particularly relevant. As
invariant patterned behavior has not yet been developed, we cannot search for it. Instead, we can
investigate how students search for efficient rules of action as they decompose and recombine
neighboring schemes. The case of Lev and Rio in paper 5 is a great example of this, as I argue that
they possibly use rules-of-action related to variables as a placeholder, along with rules-of-action
related to variables as a general number. In addition, some measures can be implemented. Design
principle C suggests how to support students in this process, e.g., by directing student attention to
an object in the algebra view with the task wording, or indicating the epistemic value of the claim as

argued in discussion, part 1 (see section 6.5).

Techniques can be even more relevant if we understand them as rules-of-action that are not
necessarily components of a stable, fully-formed scheme. They can also be rules-of-action of
neighboring schemes that students are trying to apply in the situation, toward the development of
an instrumented action scheme. Hence, techniques are the primary perceptual and gestural activities
that involve the mobilization and implementation of rules-of-action in the development of

instrumented action schemes.

These reflections and the theoretical developments of the study contribute to the IAME, as they
expand the notion of schemes and its components as described by Vergnaud (1998b) and show how
those components are relevant in the context of tool use, not only with respect to RC, but in general.
Indeed, possibilities of inference and the operational invariants have particular roles in justification

processes, illuminating the cognitive ‘ingredients’ that KOM does not explicate.
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9 FINAL DISCUSSION AND CONCLUSION

The discussion parts 1, 2, and 3 have separately addressed answers and results for each of the
research questions. The purpose of this final discussion is to address methodological choices, argue

for the relevance of the results to MER, and discuss issues across the three research questions:

RQ1: In what ways can tasks be designed to encourage lower secondary students to exercise
their reasoning competency when using a dynamic geometry and algebra environments

in the case of justification focusing on variable as a general number?

RQ2: What are the relationships between lower secondary students’ scheme-technique duality
when solving tasks developed for RQ1 in a dynamic geometry and algebra environment

and their exercise of reasoning competency as justification?

RQ3: Which theoretical links can be established between reasoning competency and the
Instrumental approach to mathematics education from the theoretical developments of
the study?

The main answer to RQ1 consists of the design principles A, B, and C, the microworld of variable

points, and the associated tasks.

The main answer to RQ2 consists of the elaboration of the three dimensions of RC in students’ IJ
processes, and how they relate to the scheme-technique duality. This led to suggestions for how
students’ IJ processes can be supported in the classroom and through task design. An additional
finding is the indication of a hybrid conception between continuous and discrete understandings of

the variable in the prediction of variable behavior, made possible by the DGAE environment.

The main answer to RQ3 are the theoretical links between KOM and IAME, established through the
analytical tool for 1J, as potentials for networking with a coordinating strategy. Building on these

links, notions within the framework of the study are revisited.

This discussion is divided into four sections. 9.1 revisits the methodology, 9.2 discusses the quality
and relevance of the answers, 9.3 debates issues and findings across the three research questions
that are not yet addressed, and section 9.4 discuss perspectives for further research and implications

for practice, and 9.5 concludes the dissertation, summarizing the answers to the research questions.
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9.1 METHODOLOGY REVISITED

The overarching goal of the study was to investigate the potential of tools that integrate algebraic
and graphic features, such as the algebra view of GeoGebra, for students to exercise their RC as a

means for theoretical development that links the KOM framework to theories in MER.

As presented in Chapter 4, in pursuit of the overarching research aim, the study has taken the DR
approach, as well as a networking perspective, as explained in Chapter 2. DR could have been
deemed sufficient as it produces both empirical and theoretical results, so why the networking
perspective? The reason is that the networking perspective allows reflective research of the
theoretical developments at a deeper level than allowed within DR. Networking practices provide
sustainability to the theoretical results because conceptual differences are confronted, and potential
theoretical conflicts in the background theories, both outside and inside MER, and principles are
identified so that discrepancies can be considered. Hence, the networking approach also contributes
to the validity of the DR study. I will address this aspect in the coming discussion of methods and

quality of results, but first, I will revisit DR in regard to competencies.

9.1.1 Revisiting design research as competency-specific

DR is inherently iterative, aiming to bridge theory and practice in educational research. Chapter 4
elaborates on how the researcher’s role can be considered twofold, with a creative perspective and
an analytical perspective. This section will discuss how the study can contribute to an understanding
of competency-specific DR studies and address the explorative aspect of the DR processes in relation

to the two perspectives.

Although competency-specific DR studies are not explicitly theorized within DR methodology, they
can be considered analogous to topic-specific DR. Though engaging with mathematical content
remains essential for exercising any competency (Niss & Hgjgaard, 2011), in competency-specific
DR, the objective is to facilitate students’ engagement with a competency, such as justification,
creating opportunities to understand and develop this competency. Hence, in competency-specific
DR, content serves as a means, while in topic-specific DR, it is the goal (Gravemeijer & Prediger,
2019). This distinction significantly impacts the design process. Gravemeijer and Prediger (2019)
claim that the preparatory phase forms hypothetical learning trajectories for topics, conjectured on
theories about a possible learning process, and a possible means of supporting that learning process
and relevant or useful goals. However, in this study, the preparatory phase has focused on what
inhibits or assists students’ engagement in reasoning processes, rather than learning processes or

learning goals. Thus, the answers to RQ1 elaborate on this query.

From the creative perspective, exploring justification processes within MER, especially using

GeoGebra (paper 1 and subsection 6.1.2), necessitated an explorative approach to task construction.
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Competency-specific DR allowed some freedom; the algebra view had to be in play, and it had to
provide students with an opportunity to exercise RC. The conceptual aspects emerged from
explorations rather than being predefined. This creative space enabled the exploration of GeoGebra’s
potential through varied tasks. Prior experience with GeoGebra, inspiration from coding, and
feedback from peers, educators, and supervisors were integral to the creative process. Although this
approach allowed creativity, starting from scratch impacted task quality, which meant that only some
students engaged in justification. Further development suggestions are discussed in subsection 6.5.3
and 7.4. Reproducing or redesigning tasks from other studies could have lessened negative impact
of the explorative approach. The competency-specific DR study in conjunction with the explorative
approach also influenced the retrospective analyses. In the retrospective analysis, search for the
potential tasks for students’ engagement in justification (as the prediction tasks) and which tasks
resulted in interesting justification that we could hope more students would engage in (as the equal
points tasks). Topic-specific DR studies can also have an explorative approach, but naturally differ

in the retrospective analysis to evaluate students’ progressions within the topic.

By reflecting on Gravemeijer and Prediger’s (2019) descriptions, competency-specific DR shares
characteristics with topic-specific DR but differs in research aims, impacting both analytical and
creative aspects. As such, this discussion can add to our understanding of what DR can be, as well as
provide methodological warrants for answers for RQ1 that encompass the development of Design

Principles.

9.1.2 Revisiting networking of theories

The NT perspective has influenced several aspects of the study, which I elaborate on subsequently.
The main function of NT has been to elaborate and solidify the links between RC and the scheme-
technique duality as a form of mutual fertilization (Niss & Jankvist, 2022) of KOM and IAME.

In all components of the study, the IAME (Drijvers et al., 2013; Trouche, 2005) provided the
theoretical perspective on students’ use of DGAE. The approach offers several constructs that revolve
around the different processes of students’ interaction with tools. As the project evolved, the
technique-scheme duality became central for zooming in on students’ use of artifacts rather than
branching out to generalize across uses. As this duality has been heavily debated and critiqued (as
laid out in subsection 2.6.1), it has required new perspectives on the notion of techniques, drawing
on the background theory of IAME, examining the works of Rabardel and colleagues (Rabardel,
1995/2002, 2001; Rabardel & Bourmaud, 2003). In doing so, networking as a research practice
(Bikner-Ahsbahs & Prediger, 2014) has been valuable, bringing awareness about the importance of
the implicit assumptions of theories, both to understand the criticism surrounding the notion of

techniques and how techniques can be approached to accommodate the matter. The study has
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established theoretical connections between RC and the IAME, based on the theoretical
developments of RQ3, particularly through the analytical tool for IJ. This involved synthesizing
research results to enhance the understanding of the link between RC and IAME. To examine the
scheme-technique duality in the context of reasoning processes, Toulmin’s (2003) argumentation
model has been reinterpreted into a procedural model, labeled the analytical tool for 1J, that has
acted as a boundary object (Star & Griesemer, 1989) between the two approaches. In these processes,
networking has been paramount for choosing a set of constructs that did not conflict with either
KOM or IAME.

9.2 QUALITY OF THE MAIN RESULTS
Schoenfeld (2007) argues that the quality of research must be judged by its trustworthiness,

generality, and importance.

He presents five key dimensions of credibility, which are related to the persuasiveness of the
assertions presented in a research study. These dimensions include descriptive and explanatory
power, prediction and falsifiability, rigor and specificity, replicability, and triangulation. I will
discuss trustworthiness, generality and importance with concern to both design results in subsection

9.2.1 and theoretical results in subsection 9.2.2.

9.2.1 Trustworthiness: Validity and reliability

Bakker and van Eerde (2015) propose that validity and reliability in DR studies can be addressed
using the notions of internal and external validity. Internal validity, which refers to the quality of the
data and the soundness of the reasoning that leads to the conclusions, plays a crucial role in the
quality of research results. A technique that may be applied to improve the internal validity of a DR
study is the use of data triangulation in the retrospective analysis (Bakker & van Eerde, 2015). The
many sources of data (transcripts, video, screencast, written products) collected in the project

allowed for this type of analysis.

The data have analyzed with two different methods. The established relationships between student’s
scheme-technique duality and dimensions of RC are based on the comparison of seven pairs of
students solving the same task. The internal validity of these results is reliable as the argument are
backed by a diversity between the seven pairs. However, these results could be strengthened by
replicating the method in the context of other tasks. This could potentially also strengthen the

descriptive elements (Prediger, 2019) of those relationships.

Other results stem from case-based analysis using the analytical tool for 1J (paper 2, 3 and 4, 5 with
additional analysis in Chapter 6). Some stem from a comparative approach, comparing students’

arguments across iteration 2 and 3 (paper 4). The findings that rest on analysis of a singular key-
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case (Thomas, 2011) of students’ IJ processes have less internal validity and consequently, these

findings serve only as proof of existence (Shoenfeld, 2007).

The validity of the analytical tool for IJ has been applied in the analysis of students’ justification
processes using tools. As the tool has been applied across cases with detailed description of both
conceptualization and application, both the validity and reliability of the tool as an explanatory

theory element can be warranted.

As explained in section 7.1, the IJ tool has an analytical unit from a claim to a reclaim. The analytical
unit has generally been applicable across cases. However, I would like to point to a few issues. Some
1J processes have no reclaim, as in the case presented in the parallel analysis (subsection 8.1.1). In
their processes, the students shift their attention to representational structures and do not return to
the claim and the implications of the relationships they identified. It is obviously not uncommon for
students to shift or lose focus. Such cases can still be analyzed but are unsuccessful justification
processes, as the qualifier is not changed. Another issue to be careful about when identifying the unit
of analysis in data, is that not all reclaims entail a change of epistemic value. This is the case if no

new data have been produced or no new interpretations have been enunciated.

9.2.2 Descriptive and explanatory power

In DR, the implementation of interventions in a naturalistic setting leads to a vast number of
dependent and independent variables, which can challenge the explanatory power (Collins et al.,
2004). Thus, the descriptive power of DR requires the researcher to take particular care in describing
both the setting of the intervention, the learners, the resources and supports applied in the setting,
and the collaboration and role of practitioners that the intervention concerns. The DR processes are
described in Chapters 5, 6, and 7. Chapter 5 details when and where the experiments took place and
gives information about the participating students and the data collected from the experiments.
Chapter 6 explores the design processes in-depth, covering both task construction and snapshots of

the retrospective analysis.

Additionally, Chapter 7 and papers 2-5 offer examples of retrospective analysis. However,
Schoenfeld (2007) also signifies that descriptive power is not veridical but should focus only on what
is essential. It is reasonable reflect on whether the DR project has been overly elaborated. There are
certain aspects, such as sources of inspiration and the reparative presentation of progression in
design principles, that fall outside the essential description. However, the explanatory approach in
the DR study and the lack of prior knowledge on the uses of the algebra view (paper 1) necessitated
transparency and clarity of the DR processes—addressing aspects of rigor, specificity, and
replicability. This necessity might somewhat reduce the descriptive power but ensures a

comprehensive understanding of the design principles that have evolved.
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The study is underpinned by the assumption that students’ use of the DGAE is connected to their
RC. This assumption is based on the understanding that variations in students’ use of artifacts result
in different justification processes and final arguments. These variations were identified through a
comprehensive analysis of students’ final arguments (paper 4), their use of techniques, as well as
differences in their epistemic and pragmatic mediation (Chapter 7). Therefore, the relationship
between the use of artifacts and students’ RC is clearly demonstrated as descriptive elements in the

data (Prediger, 2019).

With concern to the explanatory power of DR studies, Prediger (2019) states that if a relationship
between descriptive elements can be derived, it increases the explanatory power of such elements by
pointing to cause-effect relationships between phenomena or structures. Discussion Part 1, which
addresses the design results, comes before the analytical results of Chapter 6 and the theoretical
developments described in Chapter 7. Since explanatory theory elements in DR are closely related to
theoretical development (Prediger, 2019), the explanatory elements are addressed in this final

discussion.

The study has produced four explanatory theory elements. The first is the analysis of students’
justification processes using the analytical tool for 1J, as in papers 2, 3, 5, and Chapter 7. These
elements explain IJ processes as the production and interpretation of data toward the change of the
qualifier of a claim, relying on the student’s scheme-technique duality. The second explanatory
element is the relationships established between students’ scheme-technique duality in IJ processes
and the three dimensions of RC. Hence, it explains students’ IJ processes as expressions of their RC,
related to different components of students’ schemes. The third explanatory theory element is the
links established from a networking perspective, explaining how the processes described by the IJ
tool relate to concepts in IAME and the three dimensions of RC. The final explanatory theory element
is the relationships to other competencies, identified in paper 4, namely the problem handling

competency and the symbol and formalism competency.

9.2.3 Predictive power and falsification

Together, the explanatory theory elements add to the explanatory power of the study. What has
gained less attention is predictive power. Predictions are about whether the results contain a
predictive element and whether it is possible to falsify the results (Schoenfeld, 2007). The design
principles are predictive (Prediger, 2019); however, the study has been less concerned with the
extent to which certain solutions or forms of justification occur under the circumstances created in
the experiments. Schoenfeld (2007) argues that “the more theoretical claims can be examined and
tested by data, the more there is the potential for refinement and validation” (pp. 86-87).
Falsification of the results of this study exceeds the limits of this PhD project but also falls back on
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the choice of relying on case-based analyses. As a result, explanatory power has gained priority over

predictive power.

9.2.4 Generalizability and transferability of results

External validity refers to the generalizability and transferability of the results. The limits of the
results can be nuanced into four types of generalizability: claimed, implied, potential, and warranted,
depending on how substantiated the assertion of generality is (Schoenfeld, 2007). The discussions
also touch upon future perspectives of the results, providing opportunities for discussing their
importance. Schoenfeld (2007) argues that the relevance and importance of the results are crucial,
as they determine whether the results can contribute to theory and practice in the field of

mathematics education. This underscores the significance of the research in advancing the field.

A key aspect of DR is the development of theory elements transferrable to other contexts (Bakker,
2018). Therefore, the design study should consider elements that are both descriptive and
explanatory (Prediger, 2019), as well as elements that go beyond the specific context. From a DR
perspective, this reflects the quality of the results and provides insight into the relevance of the

design rrinciples beyond the specific context of 1J.

The design principles have aspects that are transferable to task design for reasoning processes and
other DGAE contexts, having both implied and potential generalizability. A finding that can be
generalized towards task design for other reasoning processes is that the intrinsic properties should
be known to students but in problems novel to students. This is relevant in reasoning contexts that
concern the development of a student’s degree of coverage or radius of action. If technical level and
introducing new concepts or properties is emphasized, one can consider using familiar problems to

balance out unfamiliar concepts.

The analytical tool for IJ and the definition of IJ can be generalized beyond the scope of the study.
The relevance of the 1J tool, first and foremost, derives significance from contributing to KOM’s RC
(Niss & Hgjgaard, 2019) in students’ use of the tool, especially by addressing a lesser researched area
of justification. As argued across papers and in this kappa, the IAME concerns the use of artifacts in
general but does not have notions that draw out the different processes, particularly for mathematics.
Consequently, it has most often been applied to problem-solving. Hence, the analytical tools for 1J
are a significant contribution to our understanding of the epistemic use of artifacts in reasoning
processes. The analytical tool both brings a new perspective to a debated construct of techniques (see
subsection 2.6.1) and suggests how the components of schemes (Vergnaud, 1998b, 2009) relate to
the use of artifacts. Some of the findings that have emerged from the analysis bring new insights to

IAME in general and not only in the context of justification. For example, paper 5 shows that

147



students’ personal experience of both the efficiency of rules-of-action and techniques advance their

instrumental genesis.

The relations between students’ scheme-technique duality and the three dimensions of RC are highly
relevant for comprehending the role of DGAE in students’ justification processes. However, most of
the findings related to RQ2 are confined to that context. Some of the suggested relationships may
have relevance for other competencies. For instance, the technical level surpasses the techniques

utilized and pertains to how students utilize the tool for epistemic mediation.

The study focused on the productive side of RC within justification, and the analytical tool has been
developed particularly within this context. Hence, its use within this context is warranted through
the continued refinement and successful application in the study. To what extent can the IJ analytical
tool be applied to the analytical aspect of the RC? This should be further explored, for example, in
the context of students analyzing and critiquing other students’ arguments, including their tool use.
There are some obvious concerns. Though the processes will also be aimed towards changing the
status of the qualifier of a claim, what is the role of DGAE in such a situation? Does the DGAE only
act as context, or are data being produced or reproduced? A fundamental relationship in the
analytical tool is the production of data through techniques, and that relationship must be present

in the situation for the tool to be relevant.

A valid question to consider is: in what other situations can the analytical tool be useful? Its
applicability beyond reasoning processes is uncertain, as it follows Toulmin’s (2003) argumentation
model. However, it can be applied in other contexts that involve reasoning and utilize DGAEs to
produce data for justifications and explanations. For instance, it can be used to provide activities
where the axiomatic structure usually becomes clear in the final result, but processes leading to a
proof can take on different forms. It is possible that the IJ analytical tool can also help in

understanding the role of tools in such processes, indicating its potential usefulness in that context.

Chapter 8 establishes and discusses theoretical links between the KOM’s RC and IAME. A few of
these may be generalizable toward other aspects of the RC and different competencies. A link that
has already been implied to be general in part 3 of the discussion is that the goal component of
students’ schemes, in general, relates to students’ exercise of competency. Some links could be
yielding insights for investigating other contexts of tool use. For example, I draw a link between the
possibilities of inference (Vergnaud, 1998b) and the development of the operational invariants
expressed in students’ warrants. Due to the theoretical perspective of justification, in an IJ context
operational invariants play the role as warrants. This will differ if we consider operational invariants
in the context of other competencies. For example, in the context of problem-handling competency,

what are the role of operational invariants if they are not warrants? So in the context of other
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competencies, can we find similar patterns of inference possibility that evolve students’ operational

invariants?

9.3 RESULTS AND ISSUES ACROSS THE STUDY

First, the subsection 9.3.1 discus the assessment of RC in IJ processes, then 9.3.2 elaborate on how

the study contributes to our understanding of the use of sliders in the algebra view.

9.3.1 Assessing students’ exercise and progression of RC within IJ
This section discusses how the study can contribute to assessing students’ exercise of RC, based on

the collective results of the study.

As discussed in discussion part 2 (see section 7.4), IJ takes a student-centered approach that
embraces students’ reliance on empirical or phenomenological knowledge, and it advocates for an
inclusive view of students’ use of tools as an exercise of RC. The aim of the study is not to evaluate or
assess students’ RC but rather to understand the processes by which students form justifications in
the context of a DGAE. However, there are elements that touch upon assessing students’ RC within
the context of IJ. These are explored in this section. These elements also serve to consider the further
progression of students’ RC. To assess students’ exercise of RC within the aspect of IJ, the assessor

can consider:

e Are the students’ instrumented actions aimed at changing the epistemic value of a claim? A
basic application of RC involves using a DGAE for verification without explanation, as
discussed in subsection 7.3.3. Verification can be effective and adequate in problem-solving
contexts, but to determine if the verification falls within RC, it must be utilized to change the
epistemic value of a claim. This can be challenging to ascertain, as the aim becomes clearer
when students elaborate explanations for their justifications.

e Are the students considering the intrinsic properties (Lithner, 2008) of the task in their
justification? As discussed in paper 4, this is crucial for students’ progression toward
theoretical justifications. The intrinsic properties serve as a foundation for students to
connect their phenomenological impressions to algebraic expressions when using a
DGAE. This also relates to students’ understanding of the properties. In paper 5 and section
7.4, I discuss this in relation to discrete and continuous understandings of variables in
dynamic behavior. How do the students understand these properties? Furthermore, are
students aware of how these properties are expressed in the tool and how they may differ
from mathematical theory?

e Whatisthe nature of students’ warrants? The ongoing discussion in papers 2 — 5 and chapters

6, 7 and 8 concerns whether students’ warrants are phenomenological or knowledge-based.
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The latter is considered more advanced than the former, but a combination of both is also a
possibility.

e What is the nature of students’ final arguments? Paper 4 categorizes students’ arguments as
phenomenological, numeric, geometric, and algebraic. The specific task at hand determines
which types of arguments are desirable.

¢ What form do students’ arguments take? While the sophistication of students’ arguments is
related to technical dimensions in part 2 of the discussion, the study has not addressed the
various forms of students’ arguments. However, in the context of DGAEs, the transition from
generalizing upon a few examples to collective subsets becomes relevant. Additionally, the

aspect of form becomes more important as students’ progress towards providing proof.

While theoretical and knowledge-based justifications are often deemed desirable, it is important to

recognize the value of phenomenological justifications and their educational significance.

In the instances of phenomenological justification processes that I have observed, such as those of
Isa and Em in paper 3, the phenomenological justifications related to intrinsic properties
demonstrate students’ engagement with algebraic structure and their ability to apply and adapt their
mathematical knowledge. This supports Olive et al. (2010), who argue that observing properties of
invariance while manipulating the object has the potential to connect experimental and theoretical
mathematics (p. 150). The more tangible experiences students have with algebraic expressions, the
stronger their foundation is for further progress. Embracing these phenomenological experiences,
which a DGAE can provide, as the basis for algebraic understanding may be an educational ideal for

lower secondary school.

9.3.2 Uses of the algebra view and sliders for RC
Paper 1 describes the lack of literature about the use of the algebra view in GeoGebra together with

sliders for lower secondary students. The paper concludes:

Very little has been researched about which functionalities in GeoGebra’s Algebra
View for working with variables as a general number, as well as how to use the
functionalities in task design for activating lower secondary students’ mathematical
reasoning competency. Still, the review does indicate that using the slider for explicit
variables can be used for this aim, and typing in expressions containing variables

should be further explored in the context of GeoGebra. (p.61)

While the potential for connecting symbolic representations to graphic representations is
mentioned, this potential is unexplored within MER. The study advances the research within this

area, i.e. students’ use of DGAE. The main critique of the algebra view is its complex representational
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systems. This suggests the need for low-complexity task design, allowing students to capitalize on
the potential. This need can to some extent be met by using explicit rather than implicit variables
when students are asked to transform and construct objects through algebraic expressions. The
microworld of variable points (see section 6.2) is a contribution to understanding how the low-
complexity of task design can be realized. Indeed, the microworld of variable points offers novel
representations of algebraic properties. By constructing points and dragging sliders, students can
access various phenomenological experiences of the structural properties of algebraic expressions.
Additive structures can be experienced as positions of sets or trajectories in the coordinate system.
Multiplicative relationships can be experienced as differences in the length of the sets, or as the speed
points move with, using the animation feature. It also provides phenomenological experiences of
intrinsic properties related to algebra and the variable as a generalized number, such as limits,

infinity, and equality.

The slider plays a crucial role in both pragmatic and epistemic mediation in IJ. Students’ utilization
of it can be categorized into production of data for either verification or justification. Students’ RC
can be linked to the sophistication of their justifications in relation to a technique, rather than the
complexity of the technique itself. This underscores the significance of using the slider tool for data

generation and interpretation, as a significant tool in the algebraic view for reasoning processes.

Through the DR study, the results stemming from the design provide insight on how the use of the
slider links graphic representation and symbols, by providing access to phenomenological
experiences of algebra concepts and structures. In the context of RC, ideally, it is such a link that
students attempt to justify. However, for students to progress from phenomenological justification
to knowledge-based justification, support and encouragement through task design and teacher
guidance are necessary. In addition, as discussion parts 1 and 2 argue, phenomenological
experiences depend on students’ utilization of the graphic view, capitalizing on the potential for

linking it to the algebra view.

9.4 IMPLICATIONS FOR PRACTICE

Some of the results have particular implications for practice, which I would like to emphasize here.
The potentials, and in particular potential uses, of technology are an ongoing debate. However, there
is some common ground for considering the epistemic uses valuable. What this study brings to this

discussion is that epistemic use of digital tools in reasoning processes involve capitalizing on

students’ phenomenological experiences as a foundation for mathematical reasoning in justification.

Some design results are relevant for implementation, both in the form they take in this kappa and in

the papers, but also as inspiration for uses of GeoGebra in practitioners own design processes. In
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this context, it is an advantage that the microworld exists within a piece of software that is already

known and accessible to students and teachers, at least in Denmark.

By providing a new representational structure, the microworld of variable points can be applied by
practitioners for teaching and learning algebraic concepts, both as a microworld for RC as well as
other competencies and age groups. This study is directly relevant to lower secondary school and
basic algebraic concepts and properties. However, more complex algebraic relationships, such as

exponential and quadratic relationships, can also be explored in the microworld.

The predictions tasks are an example of the task structure “Justified Prediction-Observation-
Explanation tasks” (see subsection 6.1.1) with particular importance for practice. It can involve
students of all ages and in different institutions when using a DGAE tool - also beyond the RC. The
“Justified Prediction-Observation-Explanation” tasks have already proved valuable in reasoning
processes using DGEs (Hgjsted, 2021). This study adds to that knowledge by supplying details of
how such a task can capitalize on the different phases, for example, to predict within the environment
by drawing, tracing, or dragging free objects. It has also been shown that comparison of other objects
in the prediction can assist students in justifying differences in the objects. Hence, the study provides

examples of how predictions are valuable in students’ exercise of RC.

The three-part discussions and this concluding discussion have collectively laid the foundation for
the subsequent project conclusion. The final section emphasizes the project’s contributions to the

overarching goal and the research inquiries.
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9.5 CONCLUSION
This dissertation has explored the potential of using a DGAE, which integrates algebraic and graphic

features, for students in lower secondary school (aged 13-16) to exercise their RC in justification
processes. Additionally, these investigations have contributed to theoretical development by linking
RC in the KOM framework with the use of DGAE to theories in MER.

Together with the kappa, I have reported on the study in six individual, yet related, papers, which
have contributed to addressing the three research questions through theoretical and empirical

contributions.

The research questions have been addressed with the iterative processes of DR, including a
networking perspective. Networking has played a dual role as a platform for reflecting on the
theoretical decisions in the project, as well as linking the KOM to other theories in MER. Though the
results of the kappa may seem segregated between theoretical and empirical, I will, once again, stress
that both empirical and theoretical results are obtained through the iterative processes of DR, as

explained and illustrated in chapter 4.

The study has addressed how tasks can be designed to encourage lower secondary students to
exercise their RC, particularly in the context of justifications that focus on variables as general
numbers (RQ1). The main results establish three design principles. The first principle deals with the
balance between unknown problems and students’ knowledge of concepts in reasoning contexts. The
second principle focuses on the complex representational structures of DGAE. The third principle
suggests a prediction task structure for promoting reasoning processes. These design principles have
been applied to and refined through the construction and development of tasks that encourage

students’ exercise of RC using a DGAE in a microworld of variable points.

Furthermore, the study has examined the relationships between students’ scheme-technique duality
(Drijvers et al., 2013) and their exercise of RC when solving these specifically designed tasks
(RQ2). The examination has included an analytical tool for 1J, presented in the appurtenant papers
(2,3 and 5). The results describe RC in relation to the use of DGAE in three dimensions: degree of

coverage, radius of action, and technical level

Finally, the study has established theoretical links between RC and the IAME, drawing on the
theoretical developments of the study (RQ3), that is, in particular, the analytical tool for 1J. This has
involved integrating insights from the research to contribute to a deeper understanding of how RC
and IAME can be linked. This theoretical perspective of the study has helped elaborate on RC and
the scheme-technique duality in a form of mutual fertilization (Niss & Jankvist, 2022), and it

provides the potential for the networking strategy of coordinating (Prediger et al., 2008). The later
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stages of the study focused on Vergnaud’s (1998b) notion of scheme, which served to elaborate on

conceptual aspects of linking IAME to the RC in the KOM framework.

What are the potentials of using DGAEs to help students (aged 13-16) exercise their RC in
justification? The use of DGAEs not only serves as an entry point for students to explore fundamental
algebraic structures and concepts, but also as a vital tool in the process. The study underscores the
need for several support measures from the side of both task design and teachers. However, if these
measures are carefully thought out and implemented, the link between algebraic symbolism and
dynamic graphic representation, through the use of sliders, can provide phenomenological
experiences of algebraic concepts and structures, allowing students to engage in reasoning about

other abstract concepts.
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HOW ABOUT THAT ALGEBRA VIEW IN GEOGEBRA? A REVIEW ON
HOW TASK DESIGN MAY SUPPORT ALGEBRAIC REASONING IN
LOWER SECONDARY SCHOOL

Rikke Maagaard Gregersen
Aarhus University, Danish School of Education, Denmark; rmg@edu.au.dk

This paper reviews the existing literature for insights on how functionalities in the Algebra View in
GeoGebra can be used in task design to activate lower secondary school students’ reasoning
competency when working with variables. Through an extensive review, only a small number of
studies were identified, indicating that this area of research so far has been neglected. Nevertheless,
the studies included point towards the slider tool to be useful, as it allows students to test their
conjectures about the mathematical relationship a variable represents and to experience if-and-only-
if statements. More specifically, typing in algebraic expressions containing variables in an input field
can orient students’ reasoning towards the symbolic representations.

Keywords: Algebra, GeoGebra, reasoning competency, task design, variable as a general number.

INTRODUCTION

In this paper, I consider the potentials of GeoGebra’s Algebra View to support students” reasoning
with expressions and variables as a generalized number by reviewing existing literature in the field
of mathematics education, with a focus on lower secondary mathematics education.

Within the last decade, the use of digital technologies in mathematics education has increased. In
Denmark, this development has coexisted with the implementation of the idea of mathematical
competencies (Niss & Hojgaard, 2019) in the Danish mathematics programs, and both developments
have been supported by the educational policies (UVM, 2019). This to such an extent that the
interplay of digital tools and students’ mathematical competencies have become the subject of
research (Geraniou & Jankvist, 2019), as new didactical potentials and possibilities emerge when new
technological tools are introduced in educational practices (Artigue, 2002).

In Denmark, Dynamic Geometry Systems (DGS), and in particular GeoGebra, have been
implemented in mathematics education throughout primary and lower secondary education.
GeoGebra holds the common features of a DGS but also differs by incorporating algebra, geometry,
and calculus in the same dynamic software (Hohenwarter et al., 2009). What can be considered unique
for GeoGebra is the so-called Algebra View (Wassie & Zergaw, 2018). All graphical objects are
simultaneously expressed algebraically and numerically in this panel. Through an input field in this
panel, objects can be constructed. This includes geometrical objects, but also algebraic objects such
as variables (expressed by a slider), functions, groups, etc. It has functionalities such as measuring,
counting objects, logical and boolean conditions, as well as functionalities similar to Computer
Algebra Systems (CAS). Yet, it also holds functionalities that go far beyond, and the syntax is
considerably different. That the Algebra View provides the option for students to work algebraically
with mathematical objects seems in line with the developments of early algebra. Already in 1998,
Kaput (1998) pleaded to algebra school mathematics across all ages, leading to an increasing number
of studies and projects focusing on younger students’ early algebraization (e.g., Cai & Knuth, 2011).
Yet, little research has focused on the development of algebraic reasoning in lower secondary school
(Knuth et al., 2011). Variable in school mathematics is used as a symbol of an ‘unknown quantity’,
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as a ‘general number’ for any indeterminate quantities or, in functional relationships as ‘covariation’.
Generally, the research on the potentials of the use of DGS in mathematics teaching and leaming has
focused on conceptual development in Euclidean geometry as well as simple and complex functions
(Wassie & Zergaw, 2018), including also the bridging of these two mathematical domains (Pedersen
et al, 2021). Consequently, the research largely focused on either co-variance in functional
relationships or invariants in geometric constructions. More specifically, the research focusing on the
potential for DGS to support students’ reasoning and reasoning competency has largely focused on
the teaching and learning of Euclidian geometry (e.g., Hojsted, 2020). How DGS and GeoGebra
specifically can be used to activate students’ reasoning competency when they are working with
variables as a general number is less researched. In this paper, I attempt to draw out of the literature
what has been researched in this matter. Hence, I ask What existing literature for which functionalities
in GeoGebra’s Algebra View can be used in task design for activating lower secondary school
students’ mathematical reasoning competency when working with variables as a general number?

THE KOM-FRAMEWORK AND ITS REASONING COMPETENCY

The Danish mathematics competency framework (KOM) (Niss & Hejgaard, 2019) was initially
developed for educational use and as such describes what mathematics as a disciple demands of
cognitive processes in terms of competencies. One of the outsets for this endeavor was to overcome
the understanding of school mathematics as only concerning the learning of the subject matter, but
also to encompass a set of competencies that reflect what is distinctive for mathematics practice in
the society. The framework constitutes eight competencies. KOM defines a mathematical
competency as “someone’s insightful readiness to act appropriately in response to a specific sort of
mathematical challenge in given situations” (Niss & Hejgaard, 2019, p. 6). In this review, I will focus
on the reasoning competency. The reasoning competency is associated with situations where students
analyze or produce mathematical arguments. These can be oral or written arguments and in a range
of justifications form from exemplifving to deductive and formal proof. An argument is considered
to be a chain of statements linked by inference to justify mathematical claims or solutions to
mathematical problems. To consider what are appropriate actions in a particular situation is also
restrained by the mathematical topic and the problem posed. At the lower secondary school level, the
curricular goals for the competency are that students should be able to distinguish between individual
cases and generalizations, as well as develop and evaluate mathematical reasoning, including when
working with digital tools (UVM, 2019). The reasoning that goes on in the classroom at this level is,
however, informal, and only a few—or maybe even no—deductive proofs are dealt with in class. Yet,
it is at this stage that students are expected to be able to put forward justifications of mathematical
relations that to a higher degree rely on theoretical knowledge and, to a lesser extent, their intuition.

METHOD

The literature search was done in five stages. In stage one, relevant texts were found by database
searches in ProQuest and Web of Science, limited to the educational databases and texts in English.

In ProQuest (Hits=115) the following search string was used (10th August, 2020):

¢ noft(GeoGebra) AND noft(Algebra* OR vari*) AND la.exact("English" OR "Danish™)
AND la.exact("ENG") NOT edlevel.exact("Higher Education" OR "Postsecondary
Education” OR "Adult Education™) AND PEER(yes),

In Web of Science (Hits=50), two sets were created and combined (10th August, 2020):
s Set #1 (GeoGebra) AND noft(Algebra* OR vari*)
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e Set #2 NOT ("Higher Education" OR "Postsecondary Education" OR "Adult Education™)

20 duplicates were found using Jabref. All in all, 146 texts were identified. Also, the following
conference proceedings were screened by searching for “GeoGebra™ and then identifying any use of
the Algebra View in the identified papers. This was done for CERME (N=8), [CTMT 10™- 14" (N=2),
MEDA (n=0). All 156 texts were uploaded to Covidence, where another five duplicates were
identified. The remaining 151 texts were then abstract-screened, and 48 were full text screened,
following the inclusion/exclusion criteria seen in table 1. Studies that used other software in amanner
that was highly similar to that of the Algebra View have also been included in the review.

Inclusion criteria

Exclusion criteria

Tool use (1)

Use of GeoGebra or highly similar
software, where algebra features are
explicitly used.

Only use of geometric features.
Not GeoGebra or software with highly
similar features

Age group of participants (2)

Primary and lower secondary.

Kindergarten, adult students, in-service
and preservice teachers, university or
college students

Types of students (3) Students with dyscalculia, deaf students,
and students with special needs
Types of studies (4) Empirical or theoretical. Studies without any documentation, or

any description of or reflections about
students” interaction with algebra
functionalities

Mathematical Content (5)

Variable as a general number.

Co-variance/functions, statistics,
programming, STEM

Table 1. Inclusion and exclusion criteria

Stage 1:

156 references imported for screening

Stage 2:

5 duplicates removed

151 studies screened against title and abstract

Stage 3:

Stage 4:

Stage 5:

103 studies excluded

48 studies assessed for full-text eligibility

44 studies excluded: 16 (criteria 1); 9 (criteria 2 ), 10 (criteria 4); 7(criteria 3); 2 (not
English or Danish)

4 studies included

In all 5 studies included

1 study included from sources identified in reference list

Table 2. Prisma of inclusion/exclusion process

By snowballing references, “Future curricular trends in school algebra and geometry: Proceedings of
a conference” was identified as a source, and after the screening, one study was added.
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PRESENTATION OF STUDIES AND FUNCTIONALITIES IN THE STUDIES

The five identified studies are all peer-reviewed but cannot be perceived at the same quality of a
journal paper. This indicates that the research of the potentials of GeoGebra’s Algebra View, and its
functionalities for mathematical tasks and processes other than functions, is still in a developing
phase. Two of the papers are theoretical, while three present empirical results. Four of the five studies
make use of GeoGebra, and one study by Lagrange and Psycharis (2011) makes use of a programming
“turtle world” software, LOGO, which makes use of very similar affordances to that of the Algebra
View in GeoGebra. The software makes use of programming language, whereas the Algebra View in
GeoGebra uses standard algebra notations and commands specific to the program.

DS ol AP INNEIIR S

Bl Al % ¢ Y s=12
A= (-4.74, 247) Input Box for s:
s=1.2 : 4
-5 [ ] 5
@ 3
. B = Point(Circle(A, s)) : P
(_/' @ 2
— (-3.54, 2.46)

@ f = Segment(A, B)

- 1.2

® c : Circle(A, B)

— (x+4.74)2 + (y-247) =144

Figure 1. GeoGebra Classic online. A slider along with an input box, varying the radius of the circle ¢
and line segment f. All visible both on the Graphics View and the Algebra View

The functionalities investigated in the five papers are the slider (in some cases also controlled by an
input box) and typing expressions containing one or more variables in the input field. In the analysis
of the studies, I distinguish between variables that appear explicitly and implicitly in the Algebra
View. Please, refer to figure 1 for the following descriptions of functionalities. The explicit
appearance is the slider tool is created by typing in the name or the letter of the variable in the input
line, which produces a line segment with a dot on it (none of which are actual geometrical objects), a
numerical value, and the numerical limit of the variable, which by default is -5 to +5. These limits
are changeable. When dragging along the line segment, the numerical value changes accordingly.
One can also adjust the increment by which the numerical value changes. A slider is visible in the
Algebra View, and can also be displayed in the Graphics View. A slider can control any geometrical
object in the Graphics View by defining the object by a variable. For example, in figure 1, the radius
of circle ¢ is defined by 5 and hence also the length of segment /=458, which is why both can be
varied by the slider. The implicit appearance of variables happens through the construction of any
dynamic geometrical object on the Graphics View, which then appears in the Algebra View with a
name, definition, and value. For example, a line segment, as in figure 1, will appear with a name, e.g.,
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f(avariable), defined by its endpoints, AB, and its value in terms of length, which in this case can be
varied by dragging the slider as point B is restricted to the circle.

ANALYSIS OF STUDIES

The two theoretical studies, Mackrell (2011) and JTawkin (2010), are critical towards the integration
of geometry and algebra in GeoGebra. Jawkin (2010) does acknowledge that analytical geometry is
an obvious connection between these two domains and agrees with the intentions of the software to
tackle student resistance towards algebra. One major concern, however, is that much of analytical
algebra is not within the scope of elementary school mathematics. Furthermore, he argues that the
unification of algebra and geometry in GeoGebra poses a pedagogical issue in the infrastructure of
representation. For example, what appears to be a circle in the Graphics View is actually a plotting
of a quadratic function, which loses its circular shape if coordinate axes are changed. Mackrell (2011)
experiences that the construction of geometrical objects in the Graphic View that produces implicit
variables can result in discrepancies in the representations in the Algebra View. For example, if a
circle is dragged, the equation for the circle varies, which is an algebraic representation, whereas if a
segment is dragged, then it is the measurement of its length that varies, which is not an algebraic
representation (notice fand ¢ in figure 1). Mackrell (2011) exemplifies the difficulties of using the
Algebra View to calculate the relationship between the area of the circle and the radius, not only
because of the discrepancy in algebraic representations but because of the large amount of
information. Jawkin (2010), on the other hand, defends this discrepancy by considering the
complexity of the algebraic representation that students would have to face if a line segment was
represented by its equation and limits. Despite Mackrell (2011) being critical, she points out that the
slider “has the potential to be an important link between geometric and algebraic representations” (p.
3), but she does not investigate the use of the slider any further. Mackrell (2011) and Jawkin (2010)
both point out issues that must be considered when developing task design for GeoGebra, both in
general and when designing tasks that aim at activating students’ reasoning competency when
working with variables. Interestingly, none of the three empirical studies seems to encounter the
issues that are described here, which might be explained by the fact that they all use variables
explicitly through the slider and not implicitly.

The first example of explicit use of variables is that of Lagrange and Psycharis (2011). In the task
posed, they ask students to dilate an alphabet letter proportionally dependent on a single variable
controlled by a slider, using LOGO. They describe how a slider provides a linkage between the
algebraic and the geometrical representation by “providing a link between the graphical distortion
and the symbolic aspect” (p. 199). They argue that by dragging a slider, the status of the physical
system is connected to the status of the symbolic system. This allows students to conjecture about
cause and effect between the numerical values and the visual variants depicted in the Graphics View.
In the study by Lagrange and Psycharis (2011), the students’ only possibility to change the physical
system is through the symbolic system. This supports that students’ reasoning about the relation
between the symbolic and physical system is oriented towards the symbolic system, since students
must produce conjectures about algebraic expressions and test them by dragging the slider. This
explicit use of variables and students’ possibility to algebraically act in the system indicates that it is
possible to direct students’ reasoning toward algebraic expressions.

Using sliders to validate or refute conjectures about the relations between numeric values and
geometrics relationships is also elaborated by Soldano and Arzarello (2017). The task design in this
study only partly uses functionalities of the Algebra View. The Algebra View is hidden, but a slider
and input boxes are depicted in the Graphics View. Their task is a so-called “Hinitikka Semantical
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game”, where students must compete while investigating under which numerical circumstances two
circles tangent. They do so by manipulating three sliders controlling the radius of each circle and the
distance between the circles. The Graphics View also depicts the numeral value of three variables.
The students must discover that these express the absolute value of the difference between the radii,
the sum of'the radii, and the distance between the centers of two circles. Soldano and Arzarello (2017)
find that by dragging sliders to represent different generic states in the configurations in the Graphics
View, or to consider different values of a variable, students challenge each other’s claims by
producing examples and counterexamples, leading students to find and even appreciate ‘if-and-only-
if” relationship. The task design supports students to reason about which geometrical relationships
the variables resemble through two different uses of the sliders. Nevertheless, the students’
argumentations are not oriented towards algebraic expression, as we saw in Lagrange and Psycharis
(2011). Possibly this is because the students cannot test algebraic expressions in the task.

In Tanguay et al. (2013), the use of wvariables and sliders is oriented towards reasoning about
arithmetical relationships. They conduct an apriori analysis of a task design that displays two sliders
along with input boxes in the Graphics View, hiding the Algebra View as in Soldano and Arzarello
(2017). One slider controls the 7-number of isosceles triangles grouped around the center, and the
second slider controls the angles in the center. Students are to identify cases of when an n-sided
polygon is formed, which is when the sum of the angels in the center is 360 degrees. In the case that
students calculate the angle, they can type it into the input box. The students are thus brought to
examine, within a geometrical context, the list of divisors of 360. The instances (e.g., n = 7) that do
not form an n-sided polygon approximation are then to be explored by increasing the number of
decimals of the center angle, leading the students to experience rational numbers and the decimal
limits of GeoGebra. Here the input box is utilized as the increment of the slider becomes very sensitive
for a large number of decimals. We see the use of variables and sliders as a means of exploring and
reasoning about arithmetical entities on geometric representations. Again, similar to Lagrange and
Psycharis (2011), the students cannot test algebraic expressions.

DISCUSSION

Considering the two appearances of variables, the explicit use of variables is dominant in all three
empirical studies, whereas the implicit use of variables is discussed in the two theoretical papers.
Also, two out of the three empirical studies hide the Algebra View, and the study that does not hide
it uses LOGO and not GeoGebra. The tool that we gain the most insight into is the slider, in two cases
along with an input box and in one case along with the possibility to type in expressions. Several
points can be drawn considering task design for activation of students’ mathematical reasoning
competency. I will synthesize these in the following.

To design tasks that support the students’ activation of their reasoning competency, the slider provides
a link between the graphic representations, the algebraic representations and the numeric values.
Dragging the slider represents the variation of a numeric value, which allows students to test
conjectures about the mathematical relationship the variable influence or represent by testing and
receiving feedback from the system. This can either be for different values of the variable(s) or
different states of the objects depicted in the Graphics View. In Tanguay et al. (2013) and Soldano
and Arzarello (2017), we see that using the sliders only in the Graphics View can support students to
activate their reasoning competency, as they can explore mathematical relationships, form
conjectures, and possibly experience ‘if-and-only-if” relationships. This can be related to the “cause
and effect” of dragging the slider. However, leaving the variable as singular entities on the Graphics
View without giving access to the Algebra View limits the students’ possibilities to test their
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conjectures as algebraic expressions. Task designers and mathematics educators must be aware that
there is a potential in GeoGebra for students to test conjectures about algebraic expressions, thus
allowing students to engage further into reasoning with variables. In Lagrange and Psycharis (2011),
we see students who engage in reasoning about algebraic relationships by testing if the typed algebraic
expressions result in a successful dilation of a letter and who reflect upon the results.

In the two studies, Tanguay et al. (2013) and Soldano and Arzarello (2017), input boxes are used
along with the slider, allowing the students to easily test specific values of the variable, and this
without struggling with positioning the slider. If there is no access to the Algebra View, task designers
should be mindful of this possibility as it allows students to test exact values more easily.

Despite GeoGebra being, at least in Denmark, one of the most used DGS in primary and lower
secondary school, the review reveals that there is a surprisingly small amount of studies that make
use of the functionalities of GeoGebra’s Algebra View in task designs that use variables as a general
number. This makes one wonder if the Algebra View simply is too complex for younger students to
manage. It is clear from Mackrell (2011) and Jawkin (2010) that the algebraic representations do
impose challenges, not least in terms of discrepancies in the algebraic representations and the amount
of information assessable in the Algebra View. Task designers and educators should keep these issues
in mind when designing tasks using functionalities of the Algebra View. As in Tanguay et al. (2013)
and Soldano and Arzarello (2017), designers can hide the Algebra View altogether, but there are also
other possibilities to limit accessible information in the Algebra View. For example, pre-constructed
objects can be hidden, or the Algebra View can be set to only show descriptions or values, making
the information less complex. In addition, using the explicit appearance of variables instead of the
implicit appearance of variables can ease these issues. Nevertheless, there is still much to be
discovered about how functionalities in the Algebra View can be used in task design for activation of
students’ reasoning competency when it comes to variables as a general number. In Lagrange and
Psycharis (2011), we do get indications of how typing in expressions that contain a variable that is
simultaneously influenced by graphic representation in LOGO can do exactly this. Will a similar
design bring similar results if tried out in GeoGebra? And how can we design tasks drawing on these
functionalities to engage lower secondary students in mathematical reasoning on core concepts and
structures in algebra, such as generality, equality, additive, and multiplicative structures?

CONCLUSION

What can be concluded from this review is that, in general, very little has been researched about
which functionalities in GeoGebra’s Algebra View for working with variables as a general number,
as well as how to use the functionalities in task design for activating lower secondary students’
mathematical reasoning competency. Still, the review does indicate that using the slider for explicit
variables can be used for this aim, and typing in expressions containing variables should be further
explored in the context of GeoGebra.
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Developing an analytical tool of the processes of justificational
mediation
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Within the Instrumental Approach (I4) the newly developed notion of justificational
mediation (JM) describes mediations that aim at establishing truth of mathematical
statements in the context of CAS-assisted proofs in textbooks. Here we study JM with
the intent to broaden the notion to the context of informal justification processes of
early secondary students interacting with GeoGebra. Seeing JM as a process that has
the objective of changing the status of a claim, we use Toulmin’s model and combine
it with the 1A to unravel the structure of the process through an analytical tool. The
study is part of a broader project on the interplay between reasoning competency and
GeoGebra with lower secondary students.

Keywords: digital environment, Instrumental Approach, justificational mediation,
reasoning competency, Toulmin’s model.

REASONING COMPETENCY AND JUSTIFICATIONAL MEDIATION

During the last decades, the use of digital technologies in mathematics education has
increased, as well as the body of research in this area (e.g., Hoyles & Lagrange, 2010).
In Denmark, this development has coincided with the promotion of mathematical
competencies, seen in the KOM-framework as “...someone’s insightful readiness to
act appropriately in response to a specific sort of mathematical challenge in given
situations.” (Niss & Hejgaard, 2019, p. 6). In the wake of this development, a need has
arisen for understanding the interplay of students” enactment and development of the
specific mathematical competencies and their use of digital technology (Geraniou &
Jankvist, 2019). What might “readiness to act appropriately” mean in the context of
digital technology? How can such readiness be identified and nurtured? These are
examples of broad questions that gave rise to this study.

We follow Geraniou and Jankvist (2019) who took some first steps in weaving together
the KOM framework with the Instrumental Approach (IA), which is also widely used
in the European research community. The IA suggests that the use of tools involves
pragmatic mediation, concerning the subject’s actions on objects and epistemic
mediation, concerning how the subject gains knowledge of objects’ properties through
the tool (Rabardel & Bourmaud, 2003). However, Jankvist and Misfeldt (2019) suggest
that a third form of mediation, justificational mediation (JM), may be useful in the
context of CAS in proofs and proving activities. JM concerns how the status (e.g.
probable, likely, true or false) of statements for a student is medified through the use
of a digital environment (Jankvist & Misfeldt, 2018; 2019). However, the authors have
advanced the notion of JM within the context of CAS-assisted proofs in textbooks in
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upper secondary school, which touches on the more formal part of the reasoning
competency. Still the authors ponder whether students think about justification, insight
and performing mathematical labor as different things and how (Jankvist & Misfeldt,
2019). So, other situations relating to the less formal side of the reasoning competency
spectrum should be considered and studied separately within this frame.

Within the KOM-framework’s reasoning competency, we study students’
mathematical informal argumentations that take place within the digital environment
GeoGebra, focussing on the processes through which an uttered statement changes
status: it may either be rejected or believed to be true to a greater degree than in its
initial form. The ways in which students justify their claims within an environment like
GeoGebra can assume forms that are closely related to the environment itself, as well
as to the underlying mathematical theory within which the objects are placed. Hence
we ask: how can we analyze JM and what insight into it can we gain’?

Seeing JM as a process of argumentation, our analytical tool is derived from Toulmin’s
model, and, because JM occurs in a digital environment, we make use of constructs
from the IA. We now explain how the theoretical frame is set up.

THEORETICAL FRAMEWORK: CONSTRUCTING A TOOL OF ANALYSIS

Although the original intention of Toulmin’s model was to analyze finalized
argumentations (Toulmin, 2003), there are numerous examples in mathematics
education where it is used to analyze students’ processes of argumentation (e.g.
Pedemonte, 2008; Simpson, 2015), also in the context of digital environments (eg.
Hollebrands, Conner & Smith, 2010). These studies, however, do not usually situate
the model within the research field of educational use of digital technologies in
mathematics, and hence do not draw on the theories used in this field. In this study, we
suggest an analytic tool that does exactly that.

With respect to the IA, we consider GeoGebra as an instrument. Such a notion arises
from the use of an artefact and the development of scheme. In this context the artefact
is GeoGebra itself, but in other cases it could be a specific tool within it (such as
dragging, or a slider). Schemes of utilization are developed by a solver to accomplish a
specific task (Rabardel, 2002). Scheme is understood according to Vergnaud's
construct: “the invariant organization of activity for a certain class of situations™
(Vergnaud, 2009, p. 88), that relates an “invisible part” to a student's visible actions.
Schemes are made up of various aspects, including a generative aspect: rules to
generate activity; namely the sequences of actions; information gathering; and controls
and an epistemic aspect: operational invariant, namely concepts-in-action; and
theerems-in-action, with the function to pick up and select the relevant information and
infer from it goals and rules.

In the following, we will introduce elements from Toulmin’s model and explain how
we interpret them within the A and with respect to JM.
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JM through Toulmin’s model in the context of GeoGebra

In Toulmin’s model, the claim is a statement of the speaker, uttered with a certain
indication of likelihood (qualifier); the claim is justified through other elements of the
argument (data, warrant, backing). The first utterance of the claim indicates the start of
the JM process, in which the aim is to change the qualifier. In younger students’
informal argumentation, the aim is seldom to construct rigorous mathematical proofs
but rather to convince themselves of the existence of mathematical relations and facts
(Jeanotte & Kieran, 2017). Hence, a change in the status of the qualifier will often be
from likely to more likely, and less often from likely to true. We recognize such a
change of status of a claim by students’ restatement of the claim accompanied by a new
qualifier. The change of the status is reached through the generation of data that for the
solver constitutes evidence and facts supporting the claim, and through the warrant
that consists of inference rules that allow the solver to connect the generated data to
the claim (Toulmin, 2003). The warrant is often implicit, in which case, it must be
inferred from the utterances and gestures of the students. We can infer the warrants and
analyze the generation of data through the notion of scheme introduced above. The
generation of data 1s the product of the generative aspect of the schemes used (e.g.,
dragging, creating objects on the screen and interacting with them, utterances and other
hand-gestures) that are carried out by students. Warrants are the epistemic aspect of the
schemes used. One last element remains; backing. This element requires some careful
consideration, which we elaborate in the next section.

Toulmin describes the backing of a warrant as *“. .. other assurances, without which the
warrants themselves would possess neither authority nor currency” (Toulmin, 2003, p.
96). However, Simpson (2015) identifies three different uses of backing in
mathematics education research. In the context of JM, we consider the backing to be
an explanation of why the warrant is relevant (Simpson, 2015). Central is, that the aim
of JM is to change the status of the claim, so the backing must explain why the warrant
is relevant for generating data that allows the change in the status of the claim. Thus,
the backing becomes fundamental to the JM process. Currently, we have reached the
following formulation of backing in JM processes:

If the claim is true, I can generate data, within the specific instrument, that is consistent
with the claim.

This seems closely related to Vergnaud’s (2009) notion of theorem-in-action, a
sentence that the solver believes to be true, but that may in fact be false. Though it can
be, it is not a mathematical theorem, and it can bridge domains of different natures. In
our case it bridges the phenomenological domain of GeoGebra with the theoretical
domain of algebra (also see Baccaglini-Frank, 2019). We recognize, that there might
be variations of such a formulation, but we are currently studying this form.
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METHODOLOGY

The task we analyze in this paper comes from a broader project, in which a series of
tasks were designed by the first author and assigned to students in three classrooms of
grade 7 students (in all 61 students). All students had prior experience using
GeoGebra's geometric tools, as well as constructing points and sliders in the algebra
view, but they had never used the slider to vary points, which is central in this task.
The students worked in pairs for two 90-minute sessions while being video recorded.
All together 17 pairs was recorded. The video recordings captured the screens and the
students, both from the computer’s camera and from a second handheld camera
controlled by the first author, who was present during all the sessions.

The example below, is of a pair students, Lilly and Mia, who were described by their
teacher as a particularly “talkative™ pair, who usually participated with confidence to
math class, even though they were not considered to be “the best” students. The tasks
was posed and solved in Danish. The task as well as the excerpt have been translated
to english for this paper.

We selected this example because of its short length and the fact that it contains many
aspects of the process of JM. Indeed, in these 75 seconds the students changed the
status of an initial claim from likely to more likely. This episode, therefore, constitutes
a unit of analysis.

AN EXAMPLE AND ANALYSIS OF JM

We use the following transcript to illustrate the analytical tool and how it is applied in
an analysis of students’ justification processes. The two students are working on a task,
where they are asked to predict how two given points 4 = (1,s) and B = (s,1) will move
in the coordinate plane in GeoGebra. If the two points are constructed in the algebraic
view, a slider for the interval [-5,5] will appear for the variable s, the slider can either
be dragged or animated, and its movement induces the points to move in the coordinate
plane as s varies. To ensure that the students predict, rather than construct and
animate/drag the slider, the GeoGebra interface in this specific task is limited to the
graphics view, showing a coordinate plane along with the cursor, the point tool, and
the pen tool. An orange textbox also appears with the coordinates of the given points.

Lilly and Mia make a conjecture about a line through AB and discuss it, despite the
task does not mention any lines. Lilly holds the mouse throughout the excerpt.

1. Lilly: [Reads out the task] Show in the coordinate system how you think point
A and B move as s changes value.
2. Ma: I have the feeling they are making such a slanted line like this (Fig. 1a).
Lilly: Yes.
Mia: That is what I imagine.
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5. Lally: If I make a point now called A right? [Places point with point tool in (2,
2.98)] So this, this is A4.

6. Lilly: And then we can say that ehm, 4 1s equal to cne comma s, right? [moves
the curser to point at the coordinate sets in the orange text box (Fig. 1b)]

Mia: What should s be?
Lilly: One here, and then s could be... [Moves A towards (1,0)]
Mia: Four.

10. Lilly: Four, so it will be here then [Moves A to (1,4) (Fig. 1b) along x=1]

11. Mia: Yes.

12. Lilly: Then we do B.

13. Ma: [Points to approx. (4,1) with her index finger (Fig. 1¢)] Yes, that is what

I said, then 1t becomes such a slanted line.

=l
<
-
pel
i

L

Figure 1. a, b, and c:
a) Mia's gesture, b) screenshot of Lilly's placement of point A, ¢) Mia points to screen
approximately at (4,1)

Analysis of the example

In the analysis, we identify the structural elements and relate them to JM. Figure 2 on
the next page visually illustrates Lilly’s and Mia’s JM process.

A process of JM starts in Lines 2-4 when the following claim (Ci) is stated and
gestured: “they [4 and B| are making such a slanted line like this” along with the
qualifier “feeling” which indicates likelihood. not certainty. Lilly seems to base her
claim on the initial data consisting of the algebraic expressions 4 = (1,5) and B = (s,1);
moreover, she describes the line in her claim through a gesture (Fig. 1a), identifying
certain geometrical features of such a line, possibly its “slant”. Now the students go on
to generate data for the claim using the instrument with the aim of changing the status
of the claim, as we are about to show.
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Figure 2: Illustration of Mia’s and Lilly’s JM process

Throughout lines 5-11 new data is generated by using the instrument. In line 5 and 6,
the students create a point and establish the relationship between the algebraic notation
of A and the created point. Throughout lines 7-11 data on this relationship is expressed
by moving the point on (1,s) from (1,0) to (1,4). On this basis we infer the warrants,
schemes, used by the students to connect the data to the claim: an ordered pair of real
numbers corresponds to the x-coordinate and y-coordinate of a point in the coordinate
plane; two points makes a line; a variable can take on any real number; and A = (1,s)
moves along the line x = 1. We note that the third warrant depends on the instrument,
as the movement of points only exists tacit within the instrument. This is an example
of how warrants can contain both theoretical elements and phenomenological elements,
linking the algebraic domain to the GeoGebra environment, as we discussed earlier.
We infer the backing to be what we conjectured: If the claim 1s true, 1 can generate
data, dependent on the specific, instrument that is consistent with the claim.

In lines 12 and 13, the students generate data regarding point B that is imagined and
gestured on account of the same warrant and backing as lines 5-11. In addition, the
restatement of the claim in line 13 indicates a change in its status of the claim: the
utterance “Yes, that is what [ said” suggests that the qualifier has changed from likely
to more likely. Overall, to reach the change in status the students drew on their
conceptual knowledge, as well as their knowledge about how variables are expressed
within the tool. The restatement of the claim and change in its status also concludes a
unit of analysis for the process of JM.
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CONCLUDING DISCUSSION OF OUR ANALYSIS

In this study we seek to gain insight into informal argumentation processes as part of
what we consider the students the reasoning competency and how this interplay with
their use of GeoGebra. We do this with a focus on a particular form of mediation -
justificational mediation (Jankvist & Misfeldt, 2019), arising from research that
combines the KOM-framework and the A (Geraniou & Jankvist, 2019). Here we
designed an analytical tool inspired by Toulmin's model and grounded within the IA.
In the following we will discuss and reflect upon the insights we have gained of this
endeavour.

The use of Toulmin's argumentation model has allowed us to identify and amplify the
importance of the qualifier as indication of change of status of a claim. This has served
as a structure for identifving a unit of analysis of what can be considered a processes
of JM. This supports that such a mediation is governed by the aim of changing this
status of a claim; it has also allowed us to connect the generative aspects and epistemic
aspects of schemes (Vergnaud, 2009) to the structure of an argument.

However, there are also limitations with this approach that relate to Toulmin's
argumentation model. We do not vet find that this tool appropriately captures the crux
of the matter, which is the interplay between theoretical and phenomenclogical
components in students' informal argumentations. Aspects of this interplay can be seen
through the notions of scheme and theorem-in-action, that we have adapted to the
warrants and backing of the model. This adaptation feels like a long "stretch" with
respect to what Toulmin's model has been previously used for in mathematics
education (Simpson, 2015). Moreover, we have transformed Toulmin's model inte a
structure with two claims (or rather a first claim and then its restatement) and two
qualifiers, to highlight the process of change in status of the claim and how it occurs.
These stretches seem to be leading rather far from the initial model, and we wonder
how appropriate it might be to still refer to Toulmin's model at all, also considering a
posteriori how we have sort of "substituted” elements from the IA to parts of the model.
Moreover, we have not yet been able to explicitly interweave the KOM-framework
with the theoretical lenses used. To sum up, has referring to the [A and to Toulmin's
argumentation model together supported us in understanding JM? To some extent yes,
as it has provided some insight into students' instrumented activity invelved in
changing the status of a claim; however, it does not yet completely satisfy us.
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Lower Secondary Students’ Reasoning n)
Competency in a Digital Environment: ey
The Case of Instrumented Justification

Rikke Maagaard Gregersen(: and Anna Baccaglini-Frank

1 How Does the Use of Digital Technology Influence
Students’ Mathematical Reasoning Competency?

The work presented in this chapter is part of a broader research problem stemming
fromthe following Danish education context that, however, is arguably an important
matter in other countries. In Denmark, the Mathematical Competencies framework
(KOM) (Niss & Hgjgaard, 2019) highly influences the curricular goals (UVM, 2019).
KOM defines a mathematical competency as “...someone’s insightful readiness to
act appropriately in response to a specific sort of mathematical challenge in given
sitnations” (Niss & Hgjgaard, 2019, p. 6).Inall, there are eight distinct yetinterrelated
competencies; here, we will be focusing in particular on the reasoning competency.

Although KOM, which was developed at the start of the century, acknowledges
digital technology in mathematical practices, it does not account for the prevalence
and the role that digital technologies now play in mathematics programs at all educa-
tional levels. In Demark, GeoGebra is the primary dynamic geometry environment
(DGE) used early on for mathematics teaching (Hgjsted, 2020b). Indeed, DGEs are
considered to support students’ mathematical reasoning competency (e.g., Hajsted,
2020a). For example, they can support students in connecting mathematical theory
with empirical explorations or identifying geometrical invariants as key properties
of geometrical figures and relationships (e.g., Hagjsted, 2020c; Leung et al., 2013;
Sinclair & Robutti, 2013).
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Our work stems from the need to deepen digital technology aspects of KOM’s
competencies descriptions, as Geraniou and Jankvist (2019, 2020) advocated at
a practical and theoretical level. Specifically, we intend to contribute to partially
bridging this research gap by offering a theoretical tool to analyze how a digital
interactive environment like GeoGebra can contribute to lower secondary school
students’ reasoning competency in a mathematical domain at the crossroads between
algebra and geometry.

Thiscontribution is also quite relevant from an internationally broader perspective.
Indeed, in addition to being a DGE, GeoGebra features an “‘algebra view” with
the symbolic representations of items that appear in the graphic view. This is a
feature shared by computer algebra systems (CAS) in general that has been studied
especially in the context of functions and related concepts in calculus (e.g., Artigue,
2002; Drijvers et al., 2013; Lagrange, 2010, 2014; Takadi et al., 2015). However, the
potential of dynamic geometry and algebra environments is yet to be fully unveiled
(Hohenwarter & Jones, 2007), especially at the lower secondary school level.

In the following paragraphs of this section, we will clarify what is intended in
the KOM framework by reasoning competency and how we intend to approach it.
Then we will provide an overview of our conceptual framework, explaining how
we adopted each construct, connecting it with others, to reach the theoretical tool
that we designed by putting it in relation to Toulmin’s argumentation model (from
now on Toulmin’s model) and the Theory of Instrumental Genesis. We will then use
the tool designed to study students’ argumentation processes in an interactive digital
environment; specifically, we analyze excerpts from two students” efforts at solving a
task in GeoGebra in which the objects in play are described algebraically and graph-
ically. Finally, we will discuss our findings, leading to the notion of instrimented
Justification to frame the process captured by the analytic tool.

1.1 Reasoning Competency in the KOM Framework

The reasoning competency includes the ability:

* to produce oral or written arguments (i.e, chains of statements linked by
inferences) and to justify mathematical claims;

® o critically analyze and assess existing or proposed claims and justification
attempts.

So the competency explicitly considers justification, hinting at various forms
of justification, ranging from reviewing or providing examples to rigorous proof
(Niss & Hgjgaard, 2011, 2019). Niss and Hgjgaard (2019) also note that reasoning
goes beyond justifying theorems and formulae, extending to the justification of any
mathematical conclusion obtained through mathematical methods or inference.
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This way of describing reasoning competency—especially the first ability
presented—resonates highly with research on argumentation. Indeed, we situate
our work within this discourse, and we use “argumentation” to refer to all processes
aimed at producing and validating mathematical claims.

Many studies have shown that students can struggle with both identifying the
relevant properties and structuring a mathematical argument (e.g., Duval, 2007).
Moreover, when engaging in argumentation, students might rely on authorities such
as standard formulas, teacher’s statements, or technology instead of their mathemat-
ical knowledge (Harel & Sowder, 2007; Lithner, 2008). Argumentation commonly
aims to change the epistemic value of a mathematical claim (Duval, 2007). Consis-
tently with Jeannotte and Kieran (2017), we consider justification a specific type of
argumentation process “... that, by searching for data, warrant, and backing, allows
for modifying the epistemic value of a narrative.” (Jeannotte & Kieran, 2017, p. 12).

1.2 Designing an Analytical Tool from a Complex
Theoretical Panorama

Our work is situated in a rather complex conceptual framework that we need to
clarify, explaining mutual relationships between the theoretical approaches and the
theoretical constructs we use. As discussed above, the broad framework within which
we situate this work in the KOM is a quite general framework organizing the main
competencies needed to become a proficient mathematician. However, it lacks detail
for students” uses of digital technology. The compatibility of KOM with a theory
designed specifically to analyze students’ use of digital technology has already been
explored by Geraniou and Jankvist (2019). Using the same theories, we take a step
into further analytic detail to gain insight into students’ reasoning processes, specif-
ically justification seen as a particular process of argumentation supported by digital
technology. To do this, we use Toulmin’s model, designed to capture the structure
of argumentations and adapt it to the context of a digital interactive environments
using the scheme-technigue duality from the Theory of Instrumental Genesis (T1G).
We do this with the intention to understand the empirical phenomenon of students’
justification processes in a digital environment.

The analytical tool we introduce here is re-elaborated from the one presented in
Gregersen and Baccaglini-Frank (2020). The TIG describes how an artifact such
as GeoGebra can become an instrument for an individual who engages in solving a
task (Rabardel & Bourmaud, 2003). Moreover, Drijvers et al. (2013) have elaborated
within the TIG three dualistic processes; we consider the scheme-tfechnigue duality.
Techniques are considered the “visible part” of doing that relies on the “invisible
part”, the solver’s schemes, that direct and organize techniques. Moreover, schemes
contain concepts and rules which regulate actions. This duality assumes that part of
the scheme can be inferred from observing actions.
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Fig. 1 Basic elements in Data » Qualifier | Claim
Toulmin’s argumentation L

model (Toulmin, 2003)
Warrant

{ Rebuttal \

Traditionally, the TIG has been applied to gain insight into students’ learning
processes solving specific mathematical tasks using a digital environment, for
example, finding the solutions of an equation with CAS (e.g., Artigue, 2002; Jupri
et al., 2016). In our case, students will be using GeoGebra to solve mathematical
tasks, but they might also be arguing in favor of or against certain claims arising in
their solution process, and we are interested in capturing this. The scheme-technique
duality alone is not sufficient, as we want to gain insight into students’ justification
processes, as particular argumentation processes, so key structural aspects should
not get lost.

We, therefore, use Toulmin’s model (Toulmin, 2003) to keep track of
these processes. In Toulmin’s model, the claim is a statement of the speaker, uttered
with a certain indication of likelihood called the gualifier. This is supported by data
that is facts and warranis that are inference rules which connect the data to the claim.
Finally, the rebutfal denotes conditions for or limits of the claim. Figure 1 depicts
such a model, as introduced by Toulmin (2003).

Commonly for Toulmin’s model, the unit of analysis is a finalized argument
restricted to a single sentence. However, a key aspect of the justification processes
we aim at capturing is the change of the qualifier of a claim, possibly leading to the
rejection or restatement of the original claim. Therefore, our units of analysis consist
of students’ actions (including utterances and gestures, both technology-mediated
and not) between their first utterance of a claim and a restatement of the claim, that
we call re-claim, involving a change in the qualifier. The qualifier can then be inferred
from the student’s actions; for example, a statement can be uttered with hesitation,
or if a student continues to search for data, we can infer that the student is not yet
convinced that the claim is true. The qualifier can change from “possible” to ““more
possible”, “less possible™, “true”, or “false”. To change the claim’s qualifier, the
students argue in favor or against the initial claim as they generate dafa that constitute
factual evidence. Figure 2 shows a generic diagram of our adapted Toulmin’s model,
our new analytical tool: in the top right corner, noted in gray, is the first uttered claim
along with a qualifier; below is the re-claim, with a new qualifier.

A second feature of our analytical tool is that a fechrigue frame appears next
to the data. This is because the main source of data, as students attempt to justify
claims in a digital interactive environment like GeoGebra, is the effect of their use
of techniques (as described in the TIG). The invisible schemes direct and orga-
nize actions with or on the data, but they also contain conceptual elements and
rules that regulate actions (Drijvers et al., 2013). Such rules can be seen in the
model as warrants, which are inference rules that connect the data to the claim.
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Current claim:
Qualifier Claim

» Qualifier | Re-claim

Technique Data | Warrants

Rebuttal, can lead to
new claim

Fig. 2 Adaptation of Toulmin’s model: an analytical tool for smadents’ justification processes in a
digital interactive environment

In short, we look at actions as warrants connecting data to claims: we make infer-
ences on the students’ (usually implicit) warrants, through their verbal utterances and
visible actions, to gain insight into their justification processes and, more in general,
into their reasoning competency. For example, since warrants consist of inference
rules connecting data to the claim, they direct how data is interpreted as evidence
(Baccaglini-Frank, 2019). Making such inferences about students’ warrants, thanks
to the structural setup provided by the tool, seems to be completely coherent with
Toulmin’s (2003) statement about warrants being potentially implicit.

A justification process can be made up of various justification sub-processes
(Pedemonte, 2007). Each of the sub-processes constituting units of analysis can
be analyzed using the tool in Fig. 2. Since a justification sub-processes can build on
previous sub-processes, for the same student or pair of students (see the following
section), analyses of successive sub-processes through the analytical tool may contain
long lists of data and warrants. For this chapter, we do not graphically link succes-
sive justification sub-processes, but we take into account previous units by recalling
relevant data and warrants previously generated and used in the new unit analyzed.

2 Method

In the case introduced below, the task that the students are solving is taken from
a sequence of tasks designed by the first author. It stems from her doctoral work,
with the general aim to explore the potentials of basic tools in the algebra view of
GeoGebra (e.g., typed-in expressions, sliders, variable points) concerning students’
justification processes. The sequence of tasks was assigned to students in pairs in
three 7th grade classrooms in two 90-min sessions. All students had prior experience
using GeoGebra. 17 pairs agreed to be recorded as they worked on the tasks, capturing
their screens, faces, and voices to make more accurate inferences, especially about
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the qualifiers of their claims. The transcriptions in this chapter have been translated
from Danish to English.

The students were asked to work in pairs so that through the interaction with a peer,
we could gain more insight into the students” justification processes. This approach
is common in the use of Toulmin’s model in mathematics education research (eg.,
Fukawa-Connelly & Silverman, 2015; Knipping, 2008; Pedemonte, 2007). Acknowl-
edging that Toulmin’s model originally only takes into account a single individual’s
argumentation, we keep track of discrepancies between each student’s position with
respect to their warrants by labeling warrants that seem to be held by one (and not
the other) student. If students seem to hold the same warrant, we do not label it.

2.1 Task Design

In the task we consider in this chapter, students are given the points A = (1, §), and
B = (5, 1) (see Fig. 3) and asked to construct a point C, dependent on s, so that C
and A move in parallel [directions]. Then they are asked: Can C = B? If so, when?

The algebra view and its tools are accessible, but the toolbar is restricted to
the cursor, the line construction tool, the parallel line construction tool, and the
perpendicular line construction tool (see Fig. 3). This design choice was made to
ensure that the students used the tools accessible in the algebra view. Previous tasks
introduce the trace tool to create a trace mark of dynamic points dependent on the
variable by dragging the slider. The slider can also be animated to make the variable
change “on its own”. This was not introduced, but it was used by some students,
including those presented in the case here. The defaultrange of a variable represented

Fig. 3 GeoGebra setting of the task. To the left is the algebra view. From top: a slider for the
variable s, points A, B, and a possible construction of C, all dependent on s and displayed in the
graphics view on the right with the coordinate plane
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by a slider in GeoGebra is [—3, 5]; it can be changed, but for this task, it was left to
this default setting.

We now provide a preliminary analysis of the task conceming possibilities it
offers for the students’ justification processes. For our students’” age group, we only
expected justifications less formal than proof.

The mathematical concepts at play are variable points on the coordinate plane,
equality, parallelism, and intersection of lines (or segments). How these concepts
are represented in GeoGebra’s graphic view increases the complexity. Although the
task refers to “parallel movement”, students who see this mathematically as points
belonging to parallel lines may have a deeper insight into how to solve the task. We
will clarify how the mathematical concepts can come into play in the solution of the
task.

The lines, and therefore parallelism and intersection, are indirectly represented.
One of the coordinates of each point is defined by a variable, so the points move
on the plane as the variable is changed. The coordinates of each point do not just
refer to a single point on the plane but to a set of points restricted by the limits of
the variable ([{—5), 5] as set by default), describing a segment that is either parallel
or perpendicular to the x-axis. These segments can be represented by activating the
trace of the variable point describing it when the slider is dragged. If the slider is
animated (i.e., it moves automatically), it provides the opportunity of focusing on
the movement of the dependent objects, in this case, points A, B, and C. With the
coordinates given, points A and B have the same coordinates when ¢ = 1, but B and
C canmnot be equal, that is, they cannot occupy the same place on the screen at the
same time. However, the position and movement of A, B, and C can be altered by
changing the expression containing s of their coordinates, either by adding a term
or changing the coefficient. The latier also changes the length (and hence the set of
points) described by the trace mark.

Depending on the students” knowledge of generality, they may approach the task
“Can C = B? If so, when?” in different ways. If they only consider the specific point
C that they construct, C = B only if their point C intersects with B in a single point,
with fixed coordinates, that hence need to be identical for both B and C. If, instead,
the students consider C as a sef of poinis on a specific line parallel fo the trace of
A, for example, x = 2, the point of the intersection of the traces left by C and B
identifies a possible equality. If the students consider C as the sef of all poinis on any
line parallel to the trace of A, the answer could be a general expression such as “C
=B,ifC= (d,és)” orC=(d, s — (d— 1)), whens = d. Of course, this is beyond
our expectations for the students in this study.

2.2 Presentation of the Case

We selected episodes from the work of two 14-year-old girls, Em and Isa, because
they were one of the two pairs of students in the larger study who answered that it is
possible to have B = C. Figure 4 presents the GeoGebra applet, with the points and
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Fig. 4 Screenshot of Em and Isa’s screen showing trace marks from A, B, and C. Replication:
hitps:/fwww.geogebra.org/m/khjnewprm

line constructed as they started the task. It displays: points A = (1, s) and B = (s,
1), along with point C = (2, 5), constructed by the students, and a line connecting B
and A, which is unrelated to the task at hand. The trace is active for all three points,
and the animations are turned on for the slider of s.

3 Analysis of the Students’ Justification Process

In all excerpts, Isa is controlling the computer. The first author acted as a teacher-
interviewer in the classroom along with the regular math teacher.

In the transcription, “what is done” and authors’ notes are enclosed in square
brackets. The transcript is presented in three excerpts that capture the main justi-
fication sub-processes of their general justification process. After each excerpt, we
provide its analysis through our analytical tool. We label reappearing watrants in
bold: the label WE concerns Warrants of Equality of points, WP concerns position
and behavior of points, and WT concerns Traces.
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1247

Excerpt 1: justification sub-process 1

o R

W0 = Oy ba

10

12
13
14

Isa Okay then, can C be equal to B?

Both [Observe GeoGebra until line 10].

Em Collide, collide, collide—nao

Isa No, they cannot be equal to each other. Because these [points at A then B with cursor],
they can be equal to each other.

Isa But Ccan't.

Em They will never collide.

Isa That is because C, C is too slow.

Em It is too far away.

Isa Yes.

Em It is too far away.

Isa At least the C we have made cannot.

Isa [Types answer: “no it cannot™].

Isa Okay, justify your answer [Reads from written assignment].

Em But there will probably be some that can if they are further away (Fig. 5).

Current claim:
Qualifier: Possible Claim 1:

cannot be equal to each other

Qualifier: more Re-claim 1: no, it

possible cannot (Line 12)
Technlque b ‘arrs
Techniqu Data Warrant
Observe animation | 1Tace marks of B and C Points are equal when they

with trace tumed

on (Lines 2-10)

for s = [-5,5] and C=(2.5)

collide (WEe)

B and C do not collide
B and A do collide
(Line 2-4)

C is 100 slow

(Line 7)

C is too far away
(Line 10)

Isa: B and C can not be equal
because B equals A (Line 4)

The speed of animated pﬂuint;

influences when points can be
equal (WEs)

The reciprocal position of points

at a given time influences when
the points can be equal (WPr)

Trace marks of B and C
for s = [-5,5] and C= (2,5)

WEe

Fig. 5 Justification sub-process 1 through the lens of the analytical
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Rebuttal:
At least the C
we have made
cannot
(Line 11)

Notice that the rebutial leads to an opposing claim (line 14): “But there will
probably be some that can” with the qualifier possible. This opposing claim becomes
the students” Claim 2.
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Excerpt 2: justification sub-process 2

Em and Isa gesture how the points move on the screen. Then they go back to observing

the screen.
15 TIsa Okay... Ehm... Wait aminute. If we do like this. [Stops animation, edit C to (2,
25), and start the animation].
16  Both [Observe the animation].
17  Isa Okay, so no. Why does it not? [Clicks the back arrow and C returns to C = (2,
s)].
18  Both [Observe the animation].
19  Isa Hmm, let’s see.
20 Em They will never collide.
21 Isa They will never, ehm, it can never be C equal to B because C is too slow.
22 Em Because C moves parallel to A.
23 Tsa Yes
24  Em Andwhen A and B collide, then C is next to it. All the time, 50 it will never be
able to get there, unless...
25 TIsa What?
26 Isa No not unless. [t just can’t (Fig. 6).
Current elaim:
Qualifier: More Possible Claim 1: No,
they cannot be equal to each other
ﬂ Qualifier: True | Re-claim 1: It just
can't (Line 26)
Technique Data Warrant

Fig. 6 Justification sub-process 2 through the lens of the analytical tool

Stop animation and
edit C 10 (2,25) in
the algebra view
(Line 15)

Trace marks of B and C
for s [-5.5] and C

((2.25))

The positions and movements of
a point are influenced by

changing the coefficient of the || Rebuttal: not
variable in the coordinate set unless

When A and B colhide, C
is next to the collision
point (line 20 - 24)

(WPe) (Line 26)

Start animation, B_ and C do not collide WEce
and observe it (linc 19)
(Line 15-16)
Click back arrow | Trace marks of B and C WPe
(to have C return | for s = [-5,5] and C
to C= (2,8)) (Line | (2:8)
17) B and C do not collide WEe
Observe animation | C is too slow WEs
(line 17-18)

A and C are parallel WPr
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Since claims 1 and 2 stated in excerpt 1 are opposing, this change in the qualifier
for claim 1 also inflicts change in the qualifier for claim 2, which goes from possible
to false.

Excerpt 3 (after an intervention of the researcher): justification sub-process 3

At this point, the first author intervenes, prompting the students to continue searching
for a possible “collision”, implying that she disagrees with their re-claim 1. She then
guides them to stop the animation and consider the position of C. She suggests: ...
try and move it [the slider] so that B collides with the trace of C”, and she suggests
exploring the x- or y-value for C. Then excerpt 3 follows:

27 Isa S0, let’s see. Look,

28 Em Wait a minute. Must it [point B] collide with A at the same time?

29 Isa No not at the same time, it [point C] just needs to be parallel with A.

30 Em Okay, okay.

31 Isa And the lines don’t need to have the same length.

32  Em Yes.

33 Isa [Clicks to edit the y-value of C—this also makes the trace disappear in the
graphics view].

34 Em Can we do like this, and then we need to move C down there [points at (0, 2)].

35 Isa Yes, but how do we do that?

36 Em Right, now it [point C] starts at two, 50 it starts there. Can we get it to start
further down? [points at (2, 2) then (0, 2)].

37 Isa (Oh yeabh, it starts here [points at (2, 2)].

382 Em Can you get it to start at minus one?

39 Isa [Edits C from (2, s) to (—1, 5). Starts animation.]

40  Both [Observe the screen).

41  Em Wait, they might collide. A still collides, so no.

42 Isa No, but we need to change...

43 Isa [Stops animation].

44  Em So we get it to start a little further down, then it might do like this. [Gestures on

the screen how C and B approach (1, 1) to collide. C from 4th quadrant and B
from 2nd quadrant]. And A then, something, it will be before.

45  Isa Yes, butitis s we have to change.

46 Em Is it s we have to change then?

47  Isa Yes, can we do like this then?

48 Isa [Edits C to C = (2, 0.5s), Starts animation].

49  Both [Observe screen).

50 Em It [point C] is still moving parallel with A, Isa.

51 Isa Yes, it is supposed to do that.

52  Em B and A still collide at the same time!

33 Isa Yes, but C is a litfle behind, C is half the time behind al-ways, okay. [Collision

of C and B happens for s = 2].
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34 FEm So, they can do it!

55 Isa Yes!

36 Em Oh, so it was just a little too fast (Fig. 7).
Current claim:
Qualifier: False Claim 2: But there will
probably be some that can
Qualifier: True Re-claim 2: So, they
(Line 55 + 57) can do it! (Line 54)

Technique Data Warrant

Imagine animation
of A, B, and C
(Lines 27-32)

Imagined set of positions
of B and C for s = [-5,5]
and C=(2,s)

Time of points colliding
(positions of) C s

parallel to (positions of)
A

For Em: B can only collide with

one other point (WEo)

For Isa: B can collide with
different points at different

values of s (WEd)

Points can be parallel

Lengths of traces
(Lines 31-32)

Traces do not need to have the

same length

Edit C to from
(2,8) to C= (-1, 8)
in algebra view.

Starts animations
and observes (Line

36)

No collision of B and C

Editing the value of x will

change the position of C

Edit C from (-1,s)
to C= (2, 0.5s) in
algebra view.

Start animation
and observe (Lines
46-52) and (Line
54-57)

C is moving parallel with WwpC
A For Em: WEo
A and B still collide For Isa: WEd
C and B collide WEd

C was too fast [not too
slow] before

The speed of points
influenced by changing

coefficient.

are
the

Fig. 7 Justification sub-process 3 through the lens of the analytical tool

Again, as claims 1 and 2 are opposing, the change in the qualifier for claim 2

inflicts a change in the qualifier for ¢laim 1, shifting it from frue to false.
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4 Results and Discussion

In this section, we discuss findings from the analyses of Em and Isa’s overall justi-
fication process. Specifically, we discuss the two main claims that the students put
forth, focusing on their mutual relationship given by the changes in their qualifiers.
Then, we give an overview of the students’ instrumented techniques and warrants
used to generate and interpret data and discuss the insight we gain on the students’
reasoning competency.

4.1 Claims and Qualifier Change

Em and Tsa argue for two opposing claims:

Claim 1: B and C cannot be equal.
Claim 2: B and C can be equal.

Asg the two claims are opposing, an increase in the qualifier of Claim 1 toward
trite leads to an implicit decrease in the qualifier of Claim 2 toward false and vice
versa. This is illustrated in Table 1.

Table 1 The changes of qualifiers of the two claims from the initial claim throughout the three
justification sub-processes

Initial claim Sub-process 1 Sub-process 2 Sub-process 3
Claim 1 Possible More possible True False
Implicit change i T
Claim 2 Possible False True

Arrows indicate the implicit decrease in the qualifier of one claim in relation to the increase of the
other

For Isa and Em, claims 1 and 2 correspond to two possible responses to the
question in the task. Precisely what spurs Claim 2 about the possible equality of
B and C is unclear. Neither student refers explicitly to the trace marks left by C
and B or to their intersection. Claim 2 seems to be related to the rebuttal in line
11: “At least the C we have made cannot”, suggesting that the students extend the
constructed point C to all points on the trajectory x = 2. The students seem to be
seeking phenomenological evidence of a “collision™ between B and C to further
convince themselves of Claim 2. As they fail to produce a collision in the second
justification sub-process, the qualifier of Claim 1 shifts to true, while Claim 2 shifts to
false. After the researcher’s intervention, suggesting that the “collision” is possible,
the students persist and eventually produce an example of C = B. The students seem
to view this as evidence confirming Claim 2 and leading to the rejection of Claim 1.
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4.2 Instrumented Techniques, Data, and Warrants

The students use the following two techniques (7',):

T'y: start the animation of the slider in the algebra view, then observe the screen
where the trace is turned on for all points;
T'5: edit the coordinates of a point in the algebra view, thenuse 7.

T4 can be further subdivided into:

T edit coefficient for a variable.
T edit a term in the constant coordinate.

In Excerpt 1, T generates the data that leads to Claim 1 (line 3). The students
describe the points as moving and the equality of points as “collision” rather than as
an intersection of lines. For point C, they seem to perceive the situation differently:
Isa talks about C as “too slow” (lines 7 and 21), from which we infer the warrant “the
speed of animated points influences when points can be equal”. On the other hand,
Em describes C in relation to other points: “too far away” (line 8 and 10) “C is next
to it” (line24) (*it” refers to where A and B collide). We infer the warrant here to
be: “the reciprocal positions of points at a given time influence when the points can
be equal”. This suggests that animating the slider can give the impression of points
moving along parallel and perpendicular trajectories, as discussed in the preliminary
analysis of the task.

T, is used twice and T»7 once to produce a collision of C and B, as evidence
of Claim 2. Both techniques are used in trial and error strategies. Tor is first used in
Excerpt 2, but it does not produce the collision. Without discussing the data generated,
the students return to the original description of C. Em suggests that “because C is
parallel to A” (line 22) and as “A collides with B”, Claim 2 will never be possible.
We infer this justification process to rely on the warrant WEo, “B can only collide
with one other point”, that feasibly emerges in Excerpt 1 from Isa’s words: “No, they
cannot be equal to each other. Because these [points at A then B with cursor], they
can be equal to each other” (line 4). WEo seems to be used again twice in Excerpt 3,
but not by Isa (line 29). Em seems to value this (mathematically false) warrant (lines
50 and 52); it is only when she sees the collision of B and C that she abandons WEo.

Conceivably, without the author’s intervention, the students would have settled
with Claim 1. However, such an intervention spurs the students to continue searching
for evidence for Claim 2. Indeed, in Excerpt 3, Em suggests to “move it [C] further
down” (lines 34 and 36), but neither student knows how to accomplish this. Em
tries to use Tpr to do this, but as she changes the x-value, point C moves in an
unexpected (for her) way, horizontally instead of vertically. By enacting Ts-, Em is
able to edit the coefficient of s to 0.5, relying on the warrant WP¢, “The positions
and movements of a point are influenced by changing the coefficient of the variable
in the coordinate set”. This results in the desired collision that the students interpret
as evidence strongly supporting Claim 2.
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We note that the students never seem to consider the trace alone as evidence
in support of Claim 2, even though the first author had given a strong hint in this
direction: only one warrant seems to refer to the trace. Moreover, the students seem
to refer to specific lines or trajectories (though lines are never mentioned explicitly)
through the names of the points moving on them. This leads them to speak of A and
C as “being parallel”. However, eventually, Em refers to the movement of A and C
as being parallel (line 50). We see this as a small step toward the distinction between
“colliding points™ and “intersecting lines”, which we see as key in the students’
potential progress in this mathematical domain.

5 Discussion

In this section, we start by discussing the specific situation of Isa and Em in relation
to the reasoning competency; then, we reflect upon what is gained by the analytical
tool we designed and used and on the theoretical implications of the coordination of
the TIG and Toulmin’ model.

5.1 How Does Isa and Em’s Use of Digital Technology
Influence Their Reasoning Competency?

Isa and Em engage in justification by using GeoGebra to generate, explore, and
interpret data. As mentioned in the case presentation, most pairs of students did not
argue for possible equality of points B and C since they only considered the point C
constructed initially, without thinking about tweaking its coordinates. On the other
hand, Em and Isa seem to reach a conception of C as the set of points on the trajectory
X = 2. We see this as an essential step in Em and Isa’s mathematical reasoning that
allowed them to make significant advances in their exploration and reasoning.

Isa and Em’s data generation is limited by the techniques they implement,
primarily Tyc and T, which do notinclude adding a term to the expression containing
the variable. Whether the data they generate is interpreted as evidence for or against
a claim relies heavily on their warrants. While Em relies very much on the warrant
WEo (B can only collide with one other point), Isa interprets the data through the
warrant WEd (B can collide with different points at different values of s). Such
warrants lead to interpretations of the data as that constitute primarily phenomeno-
logical evidence (Baccaglini-Frank, 2019) of their claims. This is also the case for
warrants WEs (the speed of animated points influences when points can be equal)
and WPr (the reciprocal position of points at a given time influences when the points
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can be equal). However, the warrant WEd, and more so the warrant WPe (the posi-
tions and movements of a point are influenced by changing the coefficient of the
variable in the coordinate set), start to establish relationships between the dynamic
points and the algebraic expressions.

We believe that interpreting the movements and positions of points in relation to
the expressions in the coordinate sets in the algebra view could have helped activate
(or construct) more profound mathematical knowledge.

5.2 Gaining Insights into Argumentation Processes
in a Digital Environment

The adaption of Toulmin’s model to the context of a digital interactive environment
through the use of the scheme-technique duality has led to an analytical tool that sheds
light on how the duality can play outin justification processes in a digital interactive
environment. Our analytical tool provides the techniques as ways of generating data,
inferring warrants thanks to the schemes-technique duality, and it shows how data is
interpreted as evidence for a certain claim.

In particular, the tool provides structure to the observed justification processes,
organizing visible elements and allowing us to make inferences about the implicit
warrants and the qualifier. Indeed, through the inferred warrants, we interpret the
visible parts of the argumentations and their relations that provide insight into the
students’ more general reasoning competency. Since a warrant is an explicit hypoth-
esis about students’ conceptions (and misconceptions) relative to the mathematical
concepts they are grappling with, the students” warrants are what allow them to
interpret feedback from the digital environment as evidence for their claims. For
example, the warrants WPe (the positions and movements of a point are influenced
by changing the coefficient of the variable in the coordinate set) and WEs (the speed
of animated points influences when points can be equal) reflect the students” concep-
tualizations of point C, which they seem to see as a “generalized” point relative to
the value of s and to the expression in the coordinate set. Such warrants allow the
students to interpret the generated data as different sets of C. Through such warrants,
obtaining evidence for a claim becomes a matter of generating data that “represents”
the claim.

Further, the student’s development and exploration of techniques empower them
to generate further data in their justification processes. Techniques that irvolve both
the graphical view and the algebraic view might further activate their reasoning
competency, as we noted earlier.
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5.3 Theoretical Implications of Adapting Toulmin’s Model
Through the Scheme-Technigque Duality

We start by noting that the two theoretical approaches we consider are not symmet-
rical. The TIG draws on developmental psychology studied by Gerald Vergnaud
and partly on cognitive ergonomics (Artigue & Trouche, 2021; Rabardel & Bour-
maud, 2003). Later the construct of rechnigie from the Anthropological Theory of
the Didactic was adopted and reinterpreted within the TIG (Artigue & Trouche,
2021), leading to the development of the scheme-technique duality (Drijvers et al.,
2013). On the other hand, Toulmin’s model is not a theory but an analytical model.
This makes it more flexible and applicable across sciences (Toulmin, 2003). It was
originally positioned in the discipline of law (Toulmin, 2003), although its use in
mathematics education has been extensive.

Despite the asymmetry outlined above, we see the conceptualization of knowledge
as the main linkage between the scheme-technique duality and Toulmin’s model. In
Toulmin’s model, data is observable factual knowledge that can imply more implicit
knowledge in the form of warrants. In the duality, knowledge appears in terms of
schemes that are partly visible, thanks to therelated techniques (Drijvers et al., 2013).
There is a parallel distinction between the observable and the implicit that has allowed
us to link warrants to the notion of schemes and data (and its generation) techniques.
Hence, we can see techniques as “windows” onto the students’ knowledge about the
objects at play (warrants), as they generate, notice, and interpret observable facts
(data) as evidence of their claims in a justification process.

In our effort to understand the specific phenomenon of student justification
processes in a digital environment, we also found ocurselves in need of adapting the
units of analysis. This led to the conception of sub-processes of justification within a
greater process. Maoreover, the sub-processes that correspond to the units of analysis
capture the transition from a “claim” to a “re-claim”, which is structurally different
from Toulmin’s original model. Indeed, rather than a static, finished argument, our
sub-processes capture the formation of arguments aimed at changing the qualifier
of a claim or reformulating the claim itself as a “re-claim”. Such adaptation of the
unit of analysis makes Toulmin’s model more compliant with the scheme-technique
duality.

The adaption of Toulmin’s model to the context of argumentation in a digital
interactive environment seems to provide a significant tool for particular types of
argumentation processes that we refer to as instrumented justification. We conclude
with the proposal of a definition for such a process.

Instrumented justification is a process through which a student modifies the qual-
ifier of one {(or more related) claim{s) using lechnigues in a digital environment o
generale and search jor dala and warranls conslifufing evidence for such claim(s).
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6 Concluding Remarks

In this chapter, we set out to contribute to a deepening of digital technology aspects
of KOM’s (Niss & Hgjgaard, 2019) reasoning competency. We have approached
this by developing an analytical tool by adapting Toulmin’s argumentation model
through the scheme-technique duality from the Theory of Instrumental Genesis to
define and capture students’ processes of instrumented justification. The tool has
provided us with a lens through which to gain insight into how the students’ useof a
digital environment is intertwined with their justification processes and hence with
their reasoning competency. In a digital environment like GeoGebra, the students’
interpretations of the objects represented are key in how the students consider them
as evidence for a claim.

The theoretical developments presented in this chapter should, in our future
research, be put under further scrutiny to consider how they align with other aspects
of the TIG and the KOM; for example, how processes of instrumental genesis in
the context of instrumented justification unfold, as well as other interesting aspects.
To do this, we see potential in using a networking approach (Prediger et al., 2008)
that conceives this first attempt of ours as a form of coordination between the TIG
and Toulmin’s model, where Radford (2008) suggests a comparison of principles,
methodology, and paradigmatic questions to consider the compatibility between the
coordinated elemennts.

Finally, from a mathematical teaching/learning point of view, the case of Em and
Isa that we investigated in the chapter revealed a tension between what they referred
to as “colliding points™ and a yet implicit notion of intersecting trajectories. Initially,
the students argued that B = C was not possible as the “collision” did not occur. To
overcome this interpretation, we conjecture that it is necessary for the students to
reach a generalized conception of C, as any point on any vertical line instead of the
specific point (e.g., C = (2, 8)) that moves in a certain way along the vertical line. Such
a generalization would entail overcoming the specific dynamic behavior of point C
and conceiving its dynamisin in a more general way. We see this as closely related to
a broader issue of dynamism and temporality of mathematical objects, as discussed,
for example, by Sinclair et al. (2009). The fine-grained analyses obtained through
our analytical tool suggest that awareness of students (mostly implicit) warrants
used in instrumented justification processes, and thus related to specific techniques
carried out within the digital environment, can provide precious insights into their
mathematical reasoning competence.

Acknowledgements Supported by Independent Research Fund Denmark [Grant no. 8018-
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Lower secondary students' exercise of reasoning competency: Potentials and

challenges of GeoGebra’s algebra view

This study addresses the potentials and challenges of algebraic features of the GeoGebra
software as a means for students in lower secondary school to exercise their reasoning
competency on the algebraic properties of variable points. The evolution of a task with
variable points is presented in order to provide a range of students’ justification processes and
arguments on two different versions of a task in GeoGebra with variable points defined by
variables. Student exercise of reasoning competency and their tool use in their instrumented
justification process is analysed in terms of the instrumental approach and the Danish
Competency framework. Results show that to draw on the algebraic tools' potential in relation
to the variable points, the students must be supported in developing their tool use for both
problem-solving and justification. As the feedback in GeoGebra is mostly graphic, this also
extends the use of graphic features; where phenomenological impressions can be a stepping
stone towards identifying core concepts. However, student experience challenges towards
exercising their reasoning competency, such as restraining from trying other solving strategies
when failing, referring to the failure of strategies in their justification and failing to recognize

procedural mistakes expressed in the representational system.

Keywords (3-10): Reasoning competency, instrumented justification, dynamic environment,

GeoGebra, algebra, variable points, lower secondary school, mathematics education

Introduction

Digital tools are an increasingly integrated part of mathematics education. In Denmark, the
Dynamic Geometry System (DGS)—GeoGebra, in particular—has been implemented in primary
and lower secondary mathematics education (Hejsted, 2020b). Consequently, research in
mathematics education in Denmark has gained attention regarding how using digital tools can
influence on students' exercise and development of their mathematical competencies (Geraniou &
Jankvist, 2019, 2020; Niss & Hojgaard, 2019). In this paper, I continue this line of research by

narrowing the focus to students' reasoning competencies (Niss & Hejgaard, 2019) for lower



secondary students. Indeed, how digital tools influence students' reasoning competencies and

reasoning processes has been debated and researched over the past decades. Some argue that they
undermine the need for theoretically validating mathematical statements (Hoyles, 2018; Laborde et
al., 2006). Others take a broader perspective on reasoning processes, finding that using a dynamic
geometry environment (DGE) can support explorative practices and forming conjectures in the
process of reaching a theoretical proof (Dana-Picard, 2009; Mariotti, 2012; Sinclair & Robutti,
2013). Taking into consideration that the majority of students' reasoning processes in lower
secondary school are usually informal ways of convincing themselves and peers that their
understanding or idea for solving a problem is correct (Balacheff, 1988; Jeannotte & Kieran, 2017,
Lithner, 2008), the use of a DGE can be a means to support students in exercising their reasoning
competency. However, for this age group, the research on the DGE as a tool that supports reasoning
processes has largely focused on geometry (e.g. Algahtani & Powell, 2015; A. Baccaglini-Frank,
2019; A. Baccaglini-Frank et al., 2013; A. E. Baccaglini-Frank, 2012; Hejsted, 2020a, 2020c;
Mariotti, 2012) and, to a lesser extent, the algebraic domain, where Computer Algebra Systems
(CAS) and graphing tools have been predominant. GeoGebra's unique integration of DGS features
and algebraic CAS-like features (Marcus Hohenwarter & Jones, 2007) holds the possibility to give
students experiences of algebraic concepts through dynamic geometric representations. The
integration manifests in GeoGebra’s interface, as representations of mathematical objects, can be
constructed and transformed visually in a graphic section and symbolically or numerically in an
algebra section. This results in a multi-representation of mathematical relationships that can be
simultaneously transformed. The algebra features in GeoGebra are accessed through a panel, the so-
called algebra view, where all objects are simultaneously represented both algebraically and
numerically. Representations of objects can be constructed and manipulated via an input field in
this panel. This includes variables represented by a slider tool (see figure 1). The slider tool is used

to differentiate the variables and "...has the potential to be an important link between geometric and
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algebraic representations"” (Mackrell, 2011, p. 3).
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Figure 1. An open slide of the interface of GeoGebra Classic with the algebra view. In this
example, the variable n is represented by a slider and defines the radius of the constructed circle ¢
and the position of point A.

The research concerning GeoGebra’s integration of DGS and algebraic features mostly
addresses the learning and teaching of topic-specific areas, such as equations, functions and
calculus (e.g. Anabousy et al., 2014; Aytekin & Kiymaz, 2019; Granberg & Olsson, 2015; Markus
Hohenwarter et al., 2009, Stupel & Ben-Chaim, 2014). Whereas research on its potential for
students to exercise their reasoning competency in relation to basic algebraic concepts (such as the
generality of a variable, algebraic expressions or the equal sign) is very scarce (Gregersen, 2022).
This is highly relevant as algebra in early secondary years is critical for preparing for the transition
from concrete to more abstract mathematics that often serve as a gatekeeper to success in high
school, postsecondary education and many career paths (Bush & Karp, 2013). In GeoGebra, points
in the coordinate plane are one of the most basic geometric representations. If a point is defined by
a variable and controlled by a slider, it can be considered a 'variable point’. In this paper, I

hypothesize that variable points can provide students with the possibility to conjecture about



algebraic properties of simple expressions on the basis of the mathematical theory of the position
of points in the coordinate plane.

Therefore, this paper aims to explore which potentials and challenges can be identified for
lower secondary students' exercise of reasoning competency to conjecture and justify algebraic
properties of variable points (in GeoGebra) through using tools in GeoGebra’s algebra view.

To explore potentials and challenges, I present the evolution of a task that has been
implemented in classrooms on two occurrences, where I also draw on prior results to account for
earlier identified challenges that were considered in the task's evolution. For each implementation, I
analyse students' work in reasoning competency as well as their tool use of GeoGebra’s algebra

view as they solve and justify solutions for a task with variable points.

A Danish perspective on mathematical competence and reasoning competency

Since the beginning of the century, a competency paradigm has arisen in education policies
(Geraniou & Jankvist, 2019). In Denmark, this resulted in the development and implementation of
the mathematics competency framework, the KOM framework (KOM) (Niss & Hejgaard, 2019).
This framework aims to describe what mathematics as a discipline demands of cognitive processes
in terms of competence. It sought to overcome the understanding of school mathematics as the sole
learning of a subject matter to encompass a set of competencies that reflect what is distinctive for

mathematics practice in society. KOM defines mathematical competence as "...someone’s
insightful readiness to act appropriately in response to a specific sort of mathematical challenge in
given situations" (Niss & Hejgaard, 2019, p. 6). The KOM framework comprises eight
competencies, one of which is the reasoning competency. Reasoning competency is associated with
situations in which students analyse or produce mathematical arguments. This can be either oral or

written arguments and in a range of forms from exemplifying to deductive and formal proof. An

argument is seen as a chain of statements linked by inference that is used to justify mathematical
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claims or solutions to mathematical problems (Niss & Hojgaard, 2011, 2019). A competency is

not disengaged from the remainder, and some competencies are more closely related as they often
appear in the same context and the degree of one competency can influence the degree of another.
For example, if challenged to prove a theorem, a person’s symbol and formalism competency as
well as their representation competency can influence their reasoning competency in the given
situation. As this study examines students' uses of the algebra view, their symbol and formalism
competency is particularly relevant. The symbol and formalism competency is associated with
situations of using and handling mathematical symbols, symbolic expressions and transformations,
as well as the rules that direct their use. The symbol and formalism competency is closely related to

the reasoning competency, though distinct in the context of application:

In principle, the ability to carry out pure routine operations, e.g. calculations, may be said to fall

within the reasoning competency since it involves the justification of a calculation’s result.

However, what one person may regard as a routine operation, another may regard as an

insurmountable problem. The actual carrying out of these operations is therefore included

under...the competency dealing with mathematical symbols and formalisms, while being able to
activate the operation belongs under the reasoning competency if this activation demands

creativity, analysis or overview. (Niss & Hojgaard, 2011, p. 61)

Likewise, the problem handling competency is particularly relevant, as problem solving
constitutes the context for the student's exercise of reasoning competency. "The procedure of
attaining an answer is a core element..." (Niss & Hojgaard, 2011, p. 53) of the problem handling
competency and is associated with situations of posing and solving mathematical problems by
devising and implementing problem-solving strategies. This is closely related to the reasoning
competency which concerns justifying strategies and solutions.

A person's competency is an evolving situated entity and can be developed over time

through active participation in (new) mathematical situations. The degree and development of

competency can be evaluated over time and also compared between individuals (Niss & Hejgaard,



2019). However, this study's aim is not to evaluate progress within the students' possession of
reasoning competency but rather to discover if the given context of variable points and use of tools
in the algebra view can be a means for students to take active participation in reasoning processes
through explicit conjecture and justifying the algebraic properties of the points. Nevertheless, as
new (for the student) mathematical problems demand some development in the already possessed
competency, I denote it as students exercising their reasoning competency as learners in their

"...enactment of mathematical activities and processes” (Niss & Hojgaard, 2019, p. 3).

Students' use of digital tools in reasoning processes

To analyse the student's use of the algebra view, I draw on the instrumental approach, which I
unfold in the coming paragraph. Drawing on this perspective and earlier results, I deliberate on the
reasoning processes that take place as students use digital tools, which I consider to be the notion of
instrumented justification (Gregersen & Baccaglini-Frank, 2022). Finally, I point to the already-

known potentials and challenges associated with using digital tools in reasoning processes.

The instrumental approach to mathematics education

The instrumental approach is a developmental theory, conceptualizing how a subject (from now on
referred to as a student) learns to use a material or non-material artefact for goal-directed activities
related to specific situations (e.g. using the right angle tool in a DGE to construct a dynamic square
or using the slider tool to investigate the tangent slope). Such a learning process creates what is
termed an instrument (Artigue & Trouche, 2021). The constructed instrument is distinct from the
artefact. An artefact is a human product that carries human cultural and social significance, meaning
that it mediates human activity (Drijvers et al., 2013). An instrument has components from the
artefact and cognitive components from the student, drawing on the psychological tradition of
considering tools and aids as a functional extension of the body and mind (Rabardel & Bourmaud,

2003). Undeniably, developing an instrument is not a trivial endeavour. Imagine learning to play
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the trumpet, drive a car or use a new piece of software. It takes time and effort to understand the
mechanics and obtain fluency. This process is called instrumental genesis.

The process of instrumental genesis is shaped through the dual process of instrumentation—
instrumentalization. How and what the student thinks, acts upon and knows can form, limit and
direct how they may and can use the artefact. This outlines the process of instrumentalization.
Discovering components of the artefact is part of this process (Trouche, 2004), and which
components of the artefact a student can mobilize will reflect which components have been
instrumentalized for a given goal and context (Trouche, 2003). In turn, the possibilities and
constraints of the artefact the latitude of what is possible for the student to do and think and in
which manner. This outlines the process of instrumentation. The dual nature of instrumentation and
instrumentalization comes down to the student’s thinking and conception being shaped by the
artefact, but also by shaping the artefact (Hoyles & Noss, 2003; Trouche, 2004). The processes of
the duality arise by mediated activity, as objects are mediated to the students through their
mobilization of the instrument. The way students use components of the artefact to solve a task is
termed a instrumented technique (Trouche, 2003). Technique is adopted from the anthropological
theory of didactics, but within the instrumental approach, it is considered a gestural expression of
the students' cognition in terms of schemes. In this paper, however, the cognitive perspective will be
considered in terms of reasoning competency, and I solely focus on how students' instrumented
techniques appear with their justification. The way in which instrumented techniques relate to
justification processes will be discussed in the following section.

Since instrumental genesis is goal-directed, I denote the instrumentalization of instrumented
techniques for the goals of problem solving and justification. A student's goal of a mobilized
instrumented technique is, in reality, intertwined within the process of instrumental genesis, but will
be differentiated in the analysis and discussion for the purpose of pointing to specific cases of

justification. Such mediated activity can be pragmatic—aimed towards obtaining a certain outcome



or change in the "world", including in the digital environment—or epistemic and aimed towards

gaining insight into the objects represented in the environment (Rabardel & Bourmaud, 2003).
Artigue (2010) argues that both pragmatic and epistemic mediation serve a purpose, but a
predominance of pragmatic mediation has little or even negative educational value. In the context of
reasoning competency and justification processes, the mediated activity's goal is to justify or verify
a proposed solution, in which case, epistemic mediation serves a purpose of insightfulness that

students need to obtain in order to understand the concepts in play that justify their solution.

Digital technology and justification

To coin mathematical reasoning and justification processes, [ follow the very broad account laid out
in KOM’s definition of reasoning competency that reasoning contains the production or analysis of
an argument as a chain of statements linked by inference in order to justify mathematical claims or
solutions to mathematical problems (Niss & Hejgaard, 2019). As earlier indicated, I focus on
student justification and justification processes that relate to the solution of problems, and due to the
age group I study, their justifications and final arguments will, at best, have implicit references to
mathematical theory but be mostly informal in nature. It follows that the arguments the students
produce do not have the structure of a formal proof (Duval, 2007), but rather that of everyday
languish. To consider what constitutes an argument, I draw on Toulmin (2003's) model of
argumentation, which denotes the basic elements of an argument. The elements consist of a claim
along with a qualifier that indicates the likelihood of the claim (e.g. true, false, possible, unlikely),
data in support of the claim, and a warrant which are inference rules that connect the data to the
claim. In other words, the warrant is the logic supporting the argument. It is not necessarily but can
be true in a mathematical sense. Further, the warrants in many cases are implicit and must be
inferred. As Olive et al. (2010) argue, once digital technology enters an educational practice, it

emerges into the practice and cannot be separated as a singular process. This also extends into
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student justification processes related to the solution of problems, as the digital environment
becomes a catalyst in the process. To conceive such influence of a digital environment in the
justifications process, Gregersen and Baccaglini-Frank (2022) attempt a definition of instrumented

Justification:

...a process through which a student modifies the qualifier of one (or more related) claim(s)

using techniques in a digital environment to generate and search for data and warrants

constituting evidence for such claim(s). (p. 135)
This definition is linked to the instrumental approach through the construct of techniques as well as
warrants that are likewise considered expressions of the student's schemes. The definition specifies
how the use of techniques considers the basic elements in the process of forming the argument. In
addition to instrumented justification, which is a process, I also consider students' final arguments.
A complete or final argument is when the qualifier of a claim is considered "true" by the student

and/or the student discontinues their search for data (Gregersen & Baccaglini-Frank, 2022).

Potentials of digital environments in reasoning processes in the algebraic domain

The early pioneers of technology in (early) algebraic education, such as Kaput (1992) and Confrey
(1992) developed software (Simcalc and functionsprobe) that supports students' algebraic thinking
as it relates to functions. Their studies revealed how dynamic, multiple representational structures
that can be acted on by will can allow students to gain an understanding of algebraic concepts
before having a well-founded understanding of algebraic routines and notation, as the dynamic
software allows students to observe and create relationships of dynamically represented concepts
(Kaput & Schorr, 2007).

A central property of dynamic environments is the continual feedback on the user's
interaction with representations, which students can interpret as verifying or falsifying their ideas

and attempts to solve a task (Arcavi & Hadas, 2000). Feedback by visual representations can
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support students in tackling existing or emerging algebraic obstacles. According to Olsson (2018),
students that can analyse the feedback from GeoGebra are more likely to justify their solutions
based on their mathematical knowledge. One can argue that these students can take advantage of
the possibility of epistemic mediation of the artefact. However, students' reasoning can also rely on
technology without questioning the applicability and reasonableness of the feedback or results,
which considerably limits the epistemic mediation (Nabb, 2010).

Specifically for GeoGebra’s algebra view, a limited amount of studies point to the slider
tool for providing feedback that dynamically links graphic, numeric and algebraic representations of
a variable. For example, dragging a slider represents the variation of a numeric value, which allows
students to verify conjectures about the mathematical relationships of a variable. However, if the
slider tool is only represented visually to dynamically transform graphic and numeric
representations, the symbolic representation of relationships is only expressed through the
structures of the graphic representation. Therefore, in supporting students' conjecturing explicitly as
pertains to relationships of the variable and expression, they can be given access to create and
transform the symbolic representation (Gregersen, 2022). This potential has historically been

explored in the software, Logo (Laborde et al., 2006).

Method and data collection

There are two main variables at play when exploring the potentials and challenges for students’ use
of tools in algebra view in GeoGebra in order to exercise their reasoning competency concerning
algebraic relationships: the student's use of the digital tool and their cognition in terms of
competency. To obtain empirical data, a sequence of tasks has been developed and implemented in
classrooms on two occasions. From the set of tasks, I report the evolution of the Equal Points task
as an analysis of the first implementation. This indicated that the Equal Points task had the potential

to provide a context for students to reason regarding the algebraic properties of variable points.
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However, the task was inaccessible for most students, and to get further insight into potentials and
challenges, it needed to be developed. First, I report on the task's settings and present the Equal
Point task. Analysis 1 the potentials and constraints of GeoGebra and variable points in terms of the
instrumental approach is analysed. Then to unfold the student challenges I conduct a global analysis
of students” exercise of reasoning competency, reports of earlier results along with a case of a pair
of students’ instrumented justification. The analysis is synthesized to argue for the evolution of the
Equal Points task.

In the second analysis, I focus solely on students’ work on the second edition of the Equal
Points task. Again, I present a global analysis of grouped student answers to gain an overview of
the outcome of the experiments in terms of students' use of reasoning competency and differences
in the nature of their justifications. Based on an information criterion (Flyvbjerg, 2006), cases
discriminate on the nature of the justification and illustrate different challenges and potentials. The
cases are analysed in terms of instrumental genesis and techniques, to gain insight into students'
challenges in their instrumentation of tools in the algebra view for justifying.

The two occasions of classroom experiments were conducted in lower secondary
classrooms. In the first session of classroom experiments, a sequence of tasks was assigned to
students in pairs in three 7% grade classrooms. The experiments were done in one class at a time, in
two 90-minute sessions. Seventeen pairs of students were recorded as they worked on the tasks,
capturing their screen, upper body and face, and voices. The experiments were conducted in close
collaboration between the author and the mathematics teachers in the three classes. All students had
prior experience using GeoGebra.

In the second session of class experiments, as a pilot study, one pair of 7" grade students in
an interview setting was recorded in a similar fashion as the first experiment. Then, the set of tasks
was assigned in a 7" grade classroom where 10 pairs were recorded in one 90-minute session that

the author conducted. These students had little experience using GeoGebra. Finally, one class from
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the first round of experiments, now in 8" grade, was also assigned the tasks and recorded. The
class mathematics teacher conducted this experiment after I provided online guidance. Collectively,
18 pairs of students were recorded.

Tasks and student transcripts have been translated into English from Danish.

Task evolution and emerging potentials

The development of the first sequence of tasks relied on prior research in the field. The evolution of
the tasks relied, to a larger degree, on the analysis of student work on the tasks. In the coming
analysis, the development and evolution will be elaborated on and centred around one specific set

of tasks: the Equal Points task.

Setting the stage of the task

The overarching aim of the set of tasks was to support students in exercising their reasoning
competency through the hypothesized potentials of the algebra view (Gregersen, 2022).
Consequently, the task sequence had to provide a context for the student's instrumented justification
and the mathematical concepts at play had to support the overarching aim by taking into account the
challenges that students face in mathematical reasoning.

Mathematical reasoning is not easy to learn and master. Many studies have shown that
students can struggle with both identifying the relevant properties and structuring a mathematical
argument (Duval, 2007, Harel & Sowder, 2007). Hence a prerequisite is that the students have
acquired the mathematical knowledge needed to solve a problem and justify the solution. Still,
students do not necessarily rely on their mathematical knowledge in their problem solving and
justification of solutions. Instead, they might rely on authorities to argue for truth, such as textbook
examples and guides, standard formulas, teacher statements and guidance or technology (Harel &
Sowder, 2007; Lithner, 2008; Misfeldt & Jankvist, 2018; Nabb, 2010). To counter these challenges,

the mathematical concepts should be within the realm of the students' routine work and knowledge,
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but in mathematical problems that are not standard or considered routine. In addition, the
mathematical concepts in the problems should be well known to a lower secondary school student,
and the concepts should be possible to represent in both the algebra view and graphic view in
GeoGebra and to be manipulated in the algebra view. Therefore, for the choice of the mathematical
content knowledge and the types of tasks, I both considered the students' knowledge and the
accessibility of the concepts in the algebra view.

In Denmark, Cartesian Geometry is introduced and used from early grades onwards
(Ministry of Children and Education 2019). It is also incorporated in the logic structures of
GeoGebra so that constructing points in the coordinate plane is accessible to students and is
possible for them to represent and transform algebraically. Plotting coordinates into a coordinate
system is, for the most part, a trivial task for a 7" grade student. From the 7" grade onwards,
students are introduced to linear and non-linear equations as well as graphical representations in the
coordinate system. Linear equations and functions are, however, new concepts for the students, and
cannot be considered well-known mathematical knowledge. It follows that the task should be
developed with respect to these two poles, points in the coordinate plane and the linear equations
and functions. To satisfy the need for non-trivial tasks, the main mathematical object is variable
points in the coordinate plane, which are points defined by expressions containing variables,
allowing students to draw on their knowledge of points in the coordinate system. The variable
points are hypothesized to provide a context for the students to be able to conjecture and justify the
algebraic properties represented by the variable points. In the task to be presented, the algebraic

properties concern equality, variables and expressions in the coordinate sets.

THE INITIAL EQUAL POINTS TASK

From the first sequence of tasks, the analysis of student answers to one specific task, the Equal

Points tasks, led to considerable evolutions in the whole sequence of tasks. An example of how
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students work on the Equal Points task would appear in GeoGebra is depicted in figure 2. Note
that points 4 = (1,5) and B = (s,1) are given in an earlier task, and point C is constructed in problem

b), which has several solutions; however, C = (2,s) is the most common among the students. The

problems posed along with solutions in brackets in the task are:

(a) When does 4 = B? (When s=1). Justify your answer.

(b) Construct a new point C dependent on s that moves in parallel with A (e.g. C=¢2,5)).

(c) Can C =A4? If so, when? (No). Justify your answer.

(d) Can C = B? If so, when? (Yes, several solutions. In general form C= B, if C= (d%s) orC =

(d, s-(d-1)), when s = d). Justify your answer.
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Figure 2. An example of how the Equal Points task appears in GeoGebra Classic.
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Analysis 1: Instrumentation and initial potentials and challenges of the Equal Points task

First, I analyse the artefact constraints and possibilities of variable points and the associated tools in
GeoGebra’s algebra view. Then follows a global analysis of the student's reasoning competency in
the first cycle of experiments by grouping the student's answers according to similarities in their
answers and coding them according to the nature of the justification. I then summarize some earlier
results that had an impact on developing the task and supply these results with an analysis of

instrumental genesis.

The constraints and possibilities of variable points and the associated tools in the algebra

view

By considering a given artefact's possibilities and constraints, we can get an understanding the
instrumentation proces. Recall from the introduction that the algebra view in GeoGebra is accessed
through a panel. Via an input field in this panel, representations of objects can be constructed and
manipulated, including geometrical and algebraic representations. A component of the algebra view
is the slider tool (figures 1 and 2) that vary explicitly appearing variables (as opposed to implicit
appearing variables that are transformed by dragging objects across the graphic view (Gregersen,
2022)). In the Equal Point task (figure 2), students construct and manipulate variable points as
defined by a variable and simple expressions. As the variable is changed, the variable point
"moves" on trajectories of line segments on the plane. Hence, the coordinates of a variable point do
not just refer to a single point on the plane but to a set of points restricted by the limits of the
variable (in GeoGebra, the limit [(-5),5] is set by default). Sets of points can be represented by
activating the frace function of the variable point, leaving a trace of points in the coordinate plane
when the slider is dragged. If the slider is animated (i.e. it changes the numeric value
automatically), the dependent point appears to move at a certain speed. The movement of points
and traces appear as line segments, and therefore parallelism and intersection are indirectly

represented by the movement or the trace of two points. If points interseet, they can be perceived as
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equal points when they occupy the same coordinate 'at the same time' as the points are defined by

the same variable and time relates to the variable's value. The variable in the coordinate set can be
part of an algebraic expression defining the position and length of the sets of points. Changing a
constant will change the position of the point and the trajectory on which it moves. Changing a
coefficient will also change the trajectory's length and if the slider is automated, it can be perceived

as a change in the speed by which the point moves.

Global analysis of students' exercise of reasoning competency

In table 1, the students' answers in the video material for tasks a, ¢ and d were condensed into a
simple form and then grouped ad hoc according to similarity. The final arguments have been coded
according to the nature of the justification referring to either A) an algebraic relationship, P)
phenomenological impressions, N) numeric information or G) geometric properties. The students
selected "No answer" if they did not get to the task for any reason. Students selected "Trrelevant
answer" if they had technical issues, misunderstood the task or overlooked essential information in

the task, and were not able to answer the actual problem as a result.

Table 1. Grouped student answers of a, ¢ and d (as b is a construction task it is not included) for t
he initial Equal Points task and the nature of their justification, referring to either A) an algebraic

relationship, P) phenomenological impressions, N) numeric information or G) geometric properties.

Grouped student answers, n = 17 pairs n pair(s) Nature
(A’ N’ P’ G)

a) When does 4 = B? (When s = 1) Justify your answer

Yes, when s = 1, then both points have the same coordinate set
Yes, because both points are at (1,1) when they intersect
Irrelevant answer

No answer

N/P

W = &= D

¢) Can C = A4? If so, when? (No) Justify your answer

No, as the points move parallel
No, as they have different x-coordinates 1

= Q
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No, they will never have the same coordinates 1 P
Irrelevant answer 2 -
No answer 5 -

d) Can C =B, and if so, when? (Yes, several solutions. In general, form C= B, if C= (d%s) or C
= (d, s - (d-1)), when s = d) Justify your answer

Yes, when s =2 and C = (2,0.55), because then C is slower
No, because B=A4,then B£C

No, because they are never at the same point

No, because they never have the same coordinates

Yes, because their traces intersect

Irrelevant answer

No answer

R R W N ) =
oo T

The students who can establish a relationship between some phenomenological impressions
from the graphic view to the algebraic information in the algebra view in their justification are
exhibiting a more developed reasoning competency than students who only refer to numeric
observation or phenomenological impressions. Student justifications referring to geometric
relationships are incomparable in this context and can be considered a flaw in the task that deflects
students' focus from the task's overall aim.

In task a), 13 pairs of students were able to recognize the equality of points 4 and B as
having the same position in (1,1), and nine pairs were able to relate this to the variable 5. These
tasks seem to hold some potential. In task c), the students were able to recognize that 4 and C could
not be equal but are mostly justified on the geometric property of parallelism in the movement of
the points. This problem does not support the students' to justify with algebraic relationships. In
task b), all students constructed a point C that was not equal to point B for any value of 5. Following
in problem d), all but one pair of students answered that C = B was not possible. This problem
seems inaccessible for the students due to the overwhelming number of wrong answers. However,
the problem-solving process of the one pair of students who did solve the problem was further
scrutinized by Gregersen and Baccaglini-Frank (2023). The results are summarized in the following

section, and a complementary analysis of their instrumental genesis is presented here.
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Results from earlier research and a complementary analysis of instrumental genesis

The pair of students, Isa and Em, recognized that if they changed point C while maintaining its
parallelism to 4, it would be possible for C to equal B.

Em and Isa's process of instrumented justification was analysed by coordinating the scheme-
technique duality (Drijvers et al., 2013) with Toulmin’s (2003) argumentation model, upon which
Gregersen and Baccaglini-Frank (2022) elaborated. This analysis revealed that understanding C as a
set of points was essential for the students' exploration and a prerequisite for the pair to start editing
point C in the algebra view. However, Isa and Em's justifications mostly relied on the
phenomenological experiences of the points moving in the graphics view, which appeared when
activating the animation of the slider for the variable s, and to some extent the traces of the variable
points. The animation and trace allowed the students to identify relevant data, such as new
positions, and a change in the speed of point C in supporting their evolving claims. However, the
students also missed significant possibilities in interpreting the trace function, which will be
elaborated on later. Finally, it should be noted that an intervention from me, acting as a teacher,
spurred the pair to continue searching for a solution (see appendix).

The following extracts of the same pairs of students' instrumental genesis are analysed with
a focus on the specific moments of instrumentalization as they edit the algebraic expression in the
coordinates. Then follows a description of how these insights, together with findings from
Gregersen and Baccaglini-Frank (2022) have led to task developments.

Isa and Em are faced with the problem of making two points with intersecting trajectories be
equal for the same value of a variable s. Further, they are expected to justify their solution, which
presupposes that they understand their solution. Consequently, both pragmatic end epistemic
mediation is needed in their tool use. This is a new kind of task for them, which means they must
enter into a process of instrumental genesis where they apply their knowledge of the tool and the

mathematical concepts at play, which is instrumentalization. Isa and Em have three instances of
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instrumentalization where they apply techniques in the algebra view (a full transeript of Isa and

Ems's solving process of problem d can be found in the appendix). First, they edit C by changing

the coefTicient of s such that C = (2, 2s), and start the animation.

Isa

Both

Isa

Okay.. ¢hm... Wait a minute. If we do like this. [Stops animation, edit C to (2,2s),
and start the animation]
[Observes the animation]

Okay, so no. Why does it not? [Clicks the back arrow and C returns to C= (2,5)]

In this instance, the pair only has a pragmatic mediation. They change the coefficient to 2, which

does not make 4 = B for any value of s and, without determining how the change in the coefficient

influences point C, they return to the previous definition. Had they done so, it could have revealed

the phonological impression that point C now 'moves' faster on the trajectory and that the length of

the trajectory has doubled. After this instance, the girls are inclined to give up, but an intervention

from me keeps them searching for a solution. Following this, they edit the constant in the y-

coordinate from (2,s) to (-1,s) and start the animation:

Em
Isa

Em

Isa
Em
Isa
Both
Em

Can we do like this, and then we need to move C down there.

Yes, but how do we do that?

Right, now it [point C] starts at two, so it starts there. Can we get it to start further
down?

Oh yeah, it starts here.

Can you get it to start at minus one?

[Edits C from (2,5) to (-1,5). Starts animation.]

[Observes the screen)

Wait, they might collide. 4 still collides, so no.

Em wants to change the position of point C. By "move the point down", it is unclear if she means

down the x-axis or down the y-axis, but Isa changes the x-value so that the point moves down the x-

axis. They recognize that this changes the trajectory of C to be on x = -1, but still C # B. Again, they
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do not seek to understand why this does not supply a solution, and hence still only pragmatic

mediation occurs. Had they sought to move the point down to -1 on the y-axis, they had reached a
solution. This would have required using the technique of adding a term to the expression, a
component of the artefact that the girls possibly have not instrumentalized yet contrary to changing
the already existing constant of the x-value. Finally, Isa edits C = (2,0.5s), then starts the animation

and finds that the points collide:

Isa [Edits C to C = (2,0.5s). Starts animation]

Both  [Observes screen]

Em It [point C] is still moving parallel with 4, Isa.

Isa Yes, it is supposed to do that.

Em B and A still collide at the same time!

Isa Yes, but C is a little behind. C is half the time behind always, okay, okay. [Collision of
C and B happens for s = 2]

Em So, they can do it!

Isa Yes!

Em Oh, so it was just a little too fast.

In this instance, the pair has both pragmatic end epistemic mediations as they can relate the
coefficient of s to the speed of point C. Recall that earlier analysis identified that the girls
overlooked a potential insight from the traces. This becomes clearer in this transcript. As the
possible position for equality between the points is indicated by the intersection of the traces of
points C and B, Isa and Em could have identified the coordinates (2,1) as the position for B = C.
This could have given the insight that C’s y-coordinate should be 1 when s = 2, and possibly lead to
a deeper understanding of why changing the coefficient to 0.5 is a solution.

The techniques the pair instrumentalize can be categorized as either Tc: edit coefficient of a
variable or Tr: edit a term. Using the techniques seems to be a somewhat random trial-and-error

approach. However, the slider's animation functionality is consistently used to verify or reject their
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trials. Yet the girls' engagement in editing the expressions in the coordinates can be considered a

vital step towards exercising their reasoning competency concerning algebraic relationships.

Task evolutions addressing challenges from analysis 1

The following issue is a synthesis of the global reasoning competency analysis, the prior results on
Isa and Em's instrumented justification and the analysis of Em and Isa's instrumentalization, which
acted as the basis for the evolution of the Equal Points task:

A. The prerequisite of considering C as a set of points that can be changed made the task
inaccessible for most students.

B. Using the animation functionality of a slider can supply a phonological impression of the
speed of points as being dependent on the coefficient, supporting students to discover this
relationship. However, we cannot expect the student to instrumentalize the animation
functionality without guidance to do so.

C. Using the trace functionality on points has the possibility of providing phonological
impressions of changing the coefficient in terms of the length of the trajectory and on the
intersections of traces to indicate the coordinate position when points are equal. However,
students need to instrumentalize the trace functionality.

D. As the students are not used to editing expressions containing variables in coordinates, their
instrumental genesis for this type of task should be further supported.

E. Tasks with parallel moving points can deflect students' justification of geometric properties.

Evolution of the Equal Points task

The second edition of the Equal Points task is presented in figure 3. The following adjustments
have been made to accommodate the issues.
To tackle issue A, the construction of point C was replaced with a predefined point: 42 = (1,

s - 1), omitting the need for students to recognize the possibility of changing point C. 42 moves at
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the same trajectory as point 4 (now AI). Consequently, the students are only dealing with one

intersection point for problems a, b and d. This also eliminates issue E. Further, it creates a situation
for students to change the y-value for a solution to 42 = B and gain experience with expressions
that contain a term. This supports issue D. Also, to tackle issue D, the problems were reformulated

to be more specific towards editing the coordinates. In introductory tasks, students are introduced to

both the trace and animation functionality (issues B and C).

DR = FANNEE

me : N . :
s=0 : i
£ | g - 50 4 $
L]
® Al = (1,s) 3 .
- (1,0 '
® B = (s,1) : 2 !
- (0,1) B |
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o A2=(1s-1) :
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Figure 3. An example of how the task can appear in GeoGebra Classic. Points 47, A2 and B are

5 38 53¢ W3 RO 3T-Q

-5

given in a prior task.

The problems posed (afong with solutions) in the task are:
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(a) Can Al = B and when? (Yes, when s = 1). Justify your answer.
(b) Can A2 = B and when? (No). Justify your answer.

(¢) If you change the x-coordinate of 42, is it then possible for A2 = B?

o Ifyes, when and why? (Yes, there are more solutions e.g. if A2 = (2,s—1) and s = 2).

e Ifno, why not?
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(d) If you instead change the y-coordinate of 42, is it then possible for A2 = B without 42 =

Al?

o Ifyes, when and why? (Yes, A = (1,2s—1) or A =(1, —s —1)).

e Ifno, why not?

Analysis 2: Potentials and challenges of the algebra view for students' exercise of

reasoning competency revealed by the evolution of the Equal Points task

As in Analysis 1, a global analysis of grouped students' answers and the nature of their justification

is completed to gain insight into their exercise of reasoning competency. They are presented in table

2. Again, the coding of the nature of the justifications is A) an algebraic relationship, P)

phenomenological impressions, N) numeric information and G) geometric properties. Students who

never got to the task for various reasons are represented by "No answer”. Students who had

technical issues, misunderstood the task or overlooked essential information in the task and were

therefore unable to answer the actual problem are represented by "Irrelevant answer".

Table 2. Grouped student answers for the second edition of the Equal Points task and the nature of

their justification referring to either A) an algebraic relationship, P) phenomenological impressions,

N) numeric information or G) geometric properties.

intersection when the other one is at the intersection
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Grouped student answers, n = 18 pairs n pair(s) Type (AN,
P,G)

a) Can 4] = B and when? (Yes, when s = 1). Justify your answer.

Yes, when s = 1, as B = (s,1) and A7 = (1,5), and when s is one, 2 A

they both are (1,1)

Yes, when s =1 because then both points are (1,1) 1 A

Yes, when both coordinate sets are (1,1), no justification 3 -

Yes, as the points cross each other 1 P

Yes, when s=1, no justification 3 B

Irrelevant answer 7 )

No answer 1 )

b) Can A2 =B and when? (No). Justify your answer.

No, as A2 is always one below 47 because of "the -1" (and B = 2 A

Al

No, as there will always be one point that has a distance to the 3 P




No, they are never at the same place at the same time
No, no justification

Irrelevant answer

No answer

—_ ] s =

¢ Ifno, why not?

¢) Ifyou change the x-coordinate of 42, is it then possible for A2 = B?

s Ifyes, when and why? (Yes, when (x,5-(x-1)), e.g. A2 = (2, s—1) and s = 2)

Yes, when A2 = (2,5-1), because then both points can have the x-
value of 2 when s is 2

Yes, when A2 = (2,5-1), because then 42 and B have the same
distance to the intersection of the trajectories

Yes, when 42 = (2,5-1), because 42 and A/ are then on different
trajectories

Yes, when 42 = (2,s-1), no justification

Irrelevant answer

No answer

6
~
1

¢ Ifno, why not?

s Ifyes, when and why? (Ves, endless solutions when y=1, e.g. A2 = (1,25—1))

d) If you instead change the y-coordinate of 42, is it then possible for 42 = B without 42 =417

Yes, when A2 = (1,25-1), no justification

No, because B always has a distance to the intersection of B and
A2’s trajectories when 42 is at the intersection

No, because they are equal in (1,1) where A7 = B, and we cannot
find a solution where 42 does not equal A/

Yes, when 42 = (1,51) or A2 = (1,5), no justification

No, no justification

Irrelevant answer

No answer

— =] = N

For problems a, b and ¢, the students who provided an answer to the problems were able to
give the correct solution. The justification of the solutions is more diverse than in the first session.
A few pairs of students (a = 2, b =2, ¢ = 1) drew on the information in the algebra view and their
knowledge of variables or coordinates in their justification. Some pairs, as with Em and Isa, drew
on phenomenological impressions of the graphic view to justify their solution. In problem c, all
students who attempted to solve the task found the correct solution on their first or second try. It

seems that determining the value of the x-coordinate to obtain equality between the points was easy
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for the students. Two pairs of students were able to justify their solution by referring to the value
of the x-coordinates, and a couple of the justifications were phenomenological in nature. Most
simply did not justify their solution.

On the contrary, problem d was a struggle for all pairs of students. Two pairs did not
recognize that, in their solution, 47 = A2, which might be related to a lack of knowledge about
expressions, e.g. knowing that 1s = 5. However, four pairs who were not able to find a solution
could justify why their solution did not hold due 47 = 42 in their solution attempts. Two pairs
provided phenomenological justifications for their failed attempts. Only one pair of students, Max
and Sam, found a correct solution, and it should be noted that this was obtained after I intervened.
This is elaborated upon further below. What is notable is that the more direct formulation of the
problem directed more students to use the algebra view to edit the expression in the y-coordinate,
thereby revealing a diversity in the techniques in students' attempts to find a solution. Gaining
insight into these (mostly fruitless) techniques and how the students instrumentalized them can
serve to gain further insight into the potentials and challenges of the algebra view for the students'

instrumented justification with algebraic properties.

Global analysis and cases of diversity in using techniques

The techniques identified can be classified as follows, and the distribution of their use can be seen

in table 3:

o Ti: Edits the term only.
e Tecr  Deletes term, then edits coefficient.

o Tc+r: Edits coefficient without deleting the term.

Table 3. An overview of students' uses of techniques in the processes of solving problem d, in

relation to grouped answers.
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Technique In relation to grouped answers (n) n
Teor then Tesr Yes, when 42 = (1, 2s-1), no justification (n = 1) 1
Tr No, because B always has a distance to the intersection of B and
A2’s trajectories when A2 is at the intersection (n = 2)
No, because we could not find a solution where A2 does not
equal 47 (n=3)
Ter No, because we could not find a solution where 42 does not | 3
equal A/ (n=1)
Yes, when 42 = (1,s1) or 42 = (1,8), no justification (n =2)

Tt is the most used technique. Five of the nine pairs of students that answered problem d

used Trand did not consider any other options. Furthermore, these students seemed to be explicitly

opposed to adding a coefficient to the expression (note the bold marking in the following

transcript). This is exemplified by Bob and Dan, who from the start reject the possibility:

Bob

Dan
Bob

Dan
Bob

Dan
Bob
Bob

So. The y-coordinate. We will have to change the subtraction, but not s.

[edit A2 = (1, 5-0), drags slider for s].

Can you change it to 07 [observes screen] Ahh, okay - We need A2 to be equal to B, but
these two cannot [points at A2 and A7, drag the slider for s].

Mhh, yes

But - I would like to set it to zero, but then the problem is that these two [points at A2
and A7] are the same.

Can't we just move it back?

I guess we can change it to addition.

I just set it to minus 2 [edits 42= (1,s-2), drags slider for s].

Plus 2 [edits 42= (1,5+2) drags slider for s].

I do not think it is possible. They have to meet in (1,1), but if it's "add two", it is two
ahead. Unless you say "add zero".

Are you allowed?

No, then A2 equals A1.

[edits A2= (1,s-1) drags slider for s] I do not think it is possible.

After a trial-and-error approach to changing the term and using the dragging functionality for

verification, the pair give up, as this only produced a solution where 42 is equal to A/. Bob, in

particular, has both pragmatic and epistemic mediations in his tool use as he analyses the situation

according to the expression and position of the point and an expected intersection in (1,2). This
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leaves him able to justify why changing the term is not a productive technique, but are not able to
consider other strategies or techniques. Despite the students having been introduced to changing the
coefficient, Bob and Dan have not instrumentalized this technique and only consider technique for
changing the term.

Four pairs of students use the Tc.7 technique. These pairs can be divided into two groups in
their use of this technique. Two pairs delete the term, edit the coefficient to 1 and take it as a
solution without justifying their solution. They do not recognize that 42 = Al, neither in the
algebraic form nor in the graphical representation where the points will move continually on top of
each other. The other two pairs of students use the Tc.r by repeatedly changing the coefficient
approaching 1, e.g. Max and Sam change the coefficient repeatedly in the following order: 3, 2, 1.5,
1.3, 1.2, 1.1. For the pair to continue, I intervened for them to adjust their technique. When I
approached them, I explained why approaching 1 does not solve the problem as they end up with
A2 = Al. 1suggested that they go back to the initial definitions of 42 = (1, 5-1) and continue trying
to find a solution without deleting -/. In their next attempt, they use Tcit typing 42 = (1, 2s-1) to

reach a solution.

Discussion of potentials and challenges of the algebra view for students' exercise of

reasoning competency

The components of the artefact the students instrumentalize for epistemic mediation impact the
nature of their justification. Therefore, to uncover the potential of the algebra view to exercise the
students' reasoning competency within the algebraic domain, I scrutinize the challenges of the
students who do not consider the algebraic relationship at play in the task in their justification, but
also contemplate the potentials still evident and how the potentials can be further supported in the

task.
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Justifying the grounds of phenomenological impression - challenge or potential?

In both the initial and second Equal Points tasks, a substantial amount of students justified their
answers on the phenomenological impressions of the variable points in the graphic view, despite
using techniques in the algebra view. We can consider this through the process of instrumentation
as the constraints and potentials of the artefact situate what the students can do and think. The
feedback the students get from using techniques in the algebra view is the change in the positions
and movements of the points in the graphic view as they drag or animate the slider for a variable.
For the students to make inferences about the changes and hence the relationship to the variable
points a technique reveals, they must also first make sense of the representation of the objects in the
graphic view. This, of course, involves epistemic mediation in students' instrumentation of the
graphic view. As the data shows, very few students make the connection between the phenomenon
they notice in the graphic view to the coordinate set and the algebraic expressions in the algebra
view. The student who does can be considered to have a more developed reasoning competency for
the given situation. However, some of the phenomenological justifications do imply an
understanding of the relationship between the coordinate set for the variable points and equality.
For example, for problem c, the answer is 'yes, 42 = (2,5-1), because then 42 and B have the same
distance to the intersection of the trajectories'. This statement implies that the students understand
there is a relationship between changing the x-coordinate and the position of the trajectory of the
point left by the trace, and moreover, that the intersection of these trajectories indicates possible
equality between the points. The next step is for the students to instrumentalize components of the
algebra view for justification. Or in other words, they must evolve their use of the algebra view to
also encompass epistemic mediation for the goal of justifying their answer. In that sense, some of
the justifications that rely on phenomenological experiences can be a stepping stone for students
exercising their reasoning competency in the algebraic domain and a potential. However, not all of

the justifications relying on phenomenological impressions can be considered as such. For example
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this (faulty) justification for problem ¢: "Yes, when A2 = (2, s-1) because A2 and A/ are then on

different trajectories”. This justification indicates that students understand that the constant in the
coordinate set corresponds to the position of the trajectory of the point, but they fail to relate it to
equality, in general, and between the relevant points B and 42. So, despite the fact that the students
do refer to the coordinate set, these students struggle with identifying the core concepts of the
problem and exercise a less developed reasoning competency. As they are struggling in their
instrumentation of the graphic view, the introduction of the algebra view adds yet another layer of
mathematical complexity, and the phenomenological justification itself is not a stepping stone, but

rather a challenge.

Challenges related to symbol and formalism competency and instrumentalization

Students struggling with instrumentalizing relevant techniques in the algebra view can, in some
instances, be related to their symbol and formalism competency, which might capture the issue for
many of the pairs struggling with problem d.

We see this in the case of Bob and Dan who, in task d, are opposed to even considering
"changing" s, which could be multiplying by a coefficient or by -1. The students' handling of
symbols becomes a challenge that results in a faulty answer despite the pair and Bob, in particular,
having instrumentalized the technique for both problem solving and justifying. This particular
difficulty could be met in a third edition of the task by adding a (visible) coefficient in the definition
of A2.

Another example of how students' lack of symbol and formalism competency challenges
their exercise of reasoning competency is those students who do not recognize that A2 = A in their
solution. Their lack of conceptual knowledge going into the instrumentation process indicates that,
as they type in /s in the coordinate set of 42, they do not recognize that s and 15 are the same

expressions. As previously mentioned, these students do not justify their solution, which indicates
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that there has been no epistemic mediation in their use of the graphic view. Had they done so, they
might have discovered that the two points occupied the same position on the same trajectory in the
graphic view, indicating that A2 = 4 /. For these students, the potential of discovering the equality
between the two expressions is then also lost. Hence, this is also an example of how a lack of

instrumentation of the graphic view challenges students' instrumentalization of tools in the algebra

view and ultimately in their exercise of reasoning competency.

Challenges related to the problem handling competency

Recall from the analysis of students' techniques applied for solving problem d that the majority only
make use of one technique, and if that fails, they conclude that 42 and B cannot be equal. This can
be associated with the lack of symbol and formalism competency, as just discussed. Yet, this can
also be associated with a lack of the problem-handling competency. Part of this competency is to
devise and implement strategies for solving mathematical problems. The strategy these students
implement is to pick a technique and stick to it. Again, in the case of Bob and Dan, Bob can explain
why their technique does not lead to equality, but they still stick to the chosen technique. This
reluctance to explore other techniques is a challenge for students' processing of instrumentalizing
other techniques in the algebra view for both problem solving and justification. Whether the cause
is a lack of students' symbol and formalism competency or problem-handling competency, it poses
a fundamental issue for students' exercise of reasoning competency when using GeoGebra and
digital technologies, in general. Gregersen and Baccaglini-Frank (2022) also pointed out this issue
when discussing that instrumented justification can become a matter of generating an example of a
claim that is then taken as evidence. This is evident in the four pairs of students that justify as so in
problem d: "No, because they are equal in (1,1) where A7 = B, and we cannot find a solution where
A2 does not equal 47". As a result of the 'one technique only' strategy, the justification refers to the

failure of that technique. As just elaborated upon, this challenge can point to issues related to
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several competencies; however, it is also notable that it is quite possible to challenge students to

overcome this issue. In the cases of Em and Isa and Max and Sam, I approach them at a point in
their problem-solving process where they are failing with their first chosen technique. In both cases,
I indicate that this problem is solvable, which spurs them to try other techniques in manipulating the

coordinate set, eventually leading them to a fruitful solution.

The potential of instrumentalizing components of the algebra view for justification

There is evidence that some, though few, students exercise their reasoning competency concerning
algebraic properties in their work with the Equal Points task. To do so, the students start or continue
a process of instrumentalizing the algebra view as an instrument for justification. This process
entails epistemic mediation where the expressions in the coordinate set, along with imposed
techniques, are related to the behaviour of the variable points. For this to be possible, they must, to
some extent, have instrumentalized the graphic view in order to understand the relationship that is
represented by the variable points, and have instrumentalized some techniques for solving the
equality problems with variable points. Indeed, the Equal Point task provides students with the
possibility to do so by providing a situation where they must make use of the algebra view in order
to influence the objects in the graphic view. Three pairs of students in problem a and two pairs of
students in problem b have final arguments that refer to algebraic properties, e.g. for problem b,
"No, as A2 is always one below A/ because of the -1". However, as just debated, several challenges
can stand in the way of the student going into a process of instrumentalizing the algebra view for
justification. Yet, from the initial task to the second edition, more students attempted to solve
problem d, which can be explained by the more direct formulation of the problem towards the
specific coordinate. This shows that the reformulation supported more students in a process of
instrumentalizing techniques in the algebra view for solving the given problem. However, as one

might notice, the part of the problem formulation related to the justification was left the same. It
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might be possible in the same manner to direct the students towards using the algebra view for

instrumented justification. Rather than just asking "justify your answer” or "whywhy not", you

could add, "use information from the algebra view in your justification" to direct students to focus

on this as they attempt to justify their solutions.

Generalizability and characteristics of findings

To discuss the strengths and weaknesses of the results, I consider the generality of the findings as

well as their theoretical characteristics (Schoenfeld, 2007).

First of all, the findings have contextual limitations that influence the study's
generalizability. The age of the students and their prior experiences with GeoGebra and algebraic
procedures influence the data. However, the potentials and challenges identified in the discussion
can inform others attempting to support a similar age group of students, and thus has some
predictive characteristics.

Secondly, the fact that some, though few, pairs of students exercise their reasoning
competency, indicates that variable points as representations of algebraic properties of variables in
expressions in GeoGebra can provide a context for students to exercise their reasoning
competencies. Yet, for this to be possible, students need the necessary support and guidance for
their instrumentalization of the tools in the algebra view for both problem solving and justification.
Some support measures are implanted in the second edition of the Equal Point task, and in the
discussion, I point towards suggestions for how these can be met in future task editions. These
suggestions do hold some generality, e.g. guiding students towards specific components of the tool
in the problem description. Here, the detailed description of the evolution of the task provides
rigour (Schoenfeld, 2007) to the study, contextualizing how and why such measures are necessary.

Finally, the analysis provides an attempt at how to theoretically approach students' exercises

of reasoning competency when working with digital environments that contribute to the general
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discussion about the influence of digital tools on students' mathematical competences (Geraniou &

Jankvist, 2019).

Conclusion

In this paper, I described the evolution from the initial task to the second Equal Points task to gain
insight into students' exercise of reasoning competency as they use tools from the algebra view in
GeoGebra. Ultimately, I point to the potentials and challenges for the students' exercise of their
reasoning competency. I do so by initially taking a global view of the students' justifications and the
nature of their arguments, which in the initial task, act as a base to point out issues as well as the
unfulfilled potential of problem d, as only one pair, Isa and Em, attempt to solve this problem. The
potential of problem d is unveiled through prior results reported from an analysis of the pair of
students along with a complimentary analysis of their instrumentation that demonstrates how the
instrumentation of the students should be guided towards editing the coordinates of the variable
point in the algebra view. In the second edition of the Equal Points task, the global analysis creates
an overview of the nature of the students' final arguments, and along with a global analysis of the
used techniques, I present different groups of students with informative cases (Flyvbjerg, 2006) to
understand the challenges the students experience. The discussion shows how arguments of the
phenomenological nature that consider the graphic properties of the variable points can be
considered a stepping stone towards understanding the algebraic properties if the students can
identify the relevant concepts at play. On the other hand, for the students who struggle with
identifying relevant properties in the graphic view, the algebra view becomes an obstacle as it adds
complexity that they do not yet understand.
Students' symbol and formalism competency also influence their ability to draw on the

potentials of the algebra view to exercise their reasoning competency. Different misunderstandings

or lack of knowledge about algebraic rules and procedures can cause faulty answers, e.g. knowing

34



that /s=s, and if a student's instrumentation is not aimed towards justifying the possibility to
discover, their fault is missed.

A challenge is related to the students' problem handling competency. A majority of the
students stick to one strategy in the problem-solving process, standing in the way of them reaching
a correct solution. Even when they can understand why their solution does not work, they do not
attempt another. The failure of the technique influenced the nature of the students' justification, as
the failure becomes evidence in their argument rather than the concepts at play in the task. It then
becomes a challenge for the students to exercise their reasoning competency.

The potential for students' exercise of reasoning competency by tools in the algebra view
lies in the structure of representations between the graphic view and the algebra view, which give
students phenomenological impressions from which they can conjecture about the algebraic
properties they have just acted on to change the behaviour of a variable point. According to the
instrumental approach to mathematics education, the goal of activity is a component that directs the
use of the tool. For students to exercise their reasoning competency by using tools in the algebra
view, they must start a process of instrumentalizing techniques for justification, which also entails
epistemic mediation. For this to be possible, they must already have instrumentalized the graphic
view for justification to understand the relationship between the variable points and the coordinate

sets in the algebra view.
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Appendix: Transcription of Isa and Em solving Equel points task d

Notes: The pair have constructed C= (2,s). The trace function is on for all points. Isa controls the

computer. R is the researcher.

1. 33:19] [Isa Okay then, can C be equal to B? [observes GeoGebra]
2. [33:24] | Em Collide, colide, colide — no. [while observing the screen]
3. [33:28] |Isa No, they cannot be equal to each other. Because these [points at 4 then B with arrow tool]. they can be equal to each other.
4. [33:34] |Isa But C'can’t.
5. [33:35] |Em No.
6. [33:35] | Isa That is because C, C'is to slow.
7. |[33:39] |Em | It is too far away.
8. ce42 Isa Yes.
9. 33:44] |Em It is too far away
10. | [33:45] |Isa At least the C we have made can not.
11. | [33:48] | Em Maybe another C can
12. J[33:50] |Isa [Types in task sheet: " no it can not ]
13. | [34:01] |Isa Okay, justify vour answer [reads from task]
14. | [34:07] | Em But there will probably be some that can, if they are further away.
If they move like this, and B is moving here, then it must collide here. Then it’s something like that we would have here.
[Gestures in the air, but the view on camera are blocked by Isa]
15. | [34:17] |Isa Yes, because A and B will always
16. | [34:20] |Isa always collide
Em
17. | [34:22] |Em So this [C]should be at the same place, at the same time, so it’s not possible.
18. | [34:25] |Isa Sad ~hm- Okay.. ehm... Wait a minute
[Looks a GeoGebra]
19. | [34:37] |Isa If we do like this. [Stops animation and Changes C to (2,2s) and starts animation ]
20. | [35:08] |Isa Observers animation
21. | [35:14] |Isa Okay, so no. Why does it not?
[elick back arrow, and Cretums to C = (2,5)]
22, | A section where they justify for why .4 = C is not possible has been cut out.
23. | [38:06] | Isa Hmm, let’s see
24. 1[38:14] | Em they will never collide
25. 1 [38:25] [Isa they will never, ehm, it can never be C equal to B because € is to show [Tums on animation]
26. |[38:26] | Em Because C moves parallel to A.
27. 1[38:29] [Isa Yes.
28. | [38:30] | Em And when 4 and B collide, then C is next to it. All the time, so it will never be able to get there, unless. ..
29. |[38:39] [Isa What?
30. ]1[38:40] |Em No not unless. It just can’t
31. 1[38:45] |R So what are you working on here?
32, 138:48] |[Isa We are working on the C equal to B
33 J1[38:51] |R Isn’t that is a tough one
34. 1[38:53] | Em But it can not!
35. | [38:54] |R It can not?
36. | [38:55] [Em [no
37. | [38:56] |[Isa We can not get to do it
38. | [38:57] | Em Because, when 4 and C are parallel , then C are to fare away, and cannot collide with the others.
39. 1[3%:08] |R Yes, so if we were to move C? Try just the point on the screen.
40. | [39:10] | Em Yes.
41. J[39:11] |R You might want to stop the animation where A and B collide.
42. 1[39:17] |R See there they collide [everybody observes the animation]
43. 1[39:19] | Em Yes
44. 1[39:20] |R So if we were to move C
45. [39:20] | Isa (stops the Animation, and moves slider to s=1,05)
46. J[39:21] | Em Hmm.
47. | [39:22] |R Where would you place it, so they would collide just after 4 and B?
48. | [39:28] | Em Ehm.
49. 1[39:29] | R Alright, so it could either be the same as 4, but that is a little boring, we already know that one.
50. 1[39:32] |Isa Yes
42




51. | [39:]32 |R So if you were to move C, where would you move it to?
52. 1[39:38] [Isa Ehmmm
53. | [39%:40] |R You can also try and move it so that B collide with the trace of C
54. 1[39:47] [Isa [Adjusts s, accordingly, strugeles a little to get the exact placement with slider ]
55. 1[40:03] | Em right there Isa. [points at the crossing of B and C”s trace ]
56. | [40:04] [R Yes
57. 1[40:15] [Isa Ugh
58. | [40:15] |R So where would vou like C to be?
59. | [401i Isa There [points at the crossing of B and C’s trace, s=1,8 ]
60. 1[30:19] |R Yes, so how can you get it there?
61. |[40:21] [Isa Ehm
62. | [40:22] |R What do you need to change for € to be there?
63. 1[40:27] [Isa We could...
64. | [40:35] |R All right, I'll give you a couple of hints, then see what you can do with that. Consider, which of the coordinate values do you
need to change? Is it the x- or the y-value? And how much do you need to change it?
65. | [40:46] [Isa Okay
66. |[40:47] |R Yes? [leaves]
67. | [40:49] | Isa 50, let’s see. Look
68. | [40:51] | Em Wait a minute. Must it collide with A at the same time?
69. |[40:58] |Isa No not at the same time, it just needs to be parallel with 4.
70. 1[41:00] | Em Okay, okay.
71. 1[41:01] [Isa And the lines don’t need to have the same length.
72. 1[41:04] | Em Yes
73. j4L.04 Isa [Isa clicks to edit the y-value of C — this also makes the trace disappear in the graphic view]
74. | [41:10] | Em Can we do like this, and then we need to move C down there.
75. 1[41:13] [Isa Yes but how do we do that?
76. | [41:17] | Em Right now it starts at two , so it starts there. Can we get to start further down?
77. 1[41:23] [Isa Oh veah it starts here.
78. |[41:25] | Em Can you get it to start at minus one?
79. 1[41:31] |[Isa [Changes C from (2, ) to (-1.s) . starts animation.]
80. Em Both observes screen
& Isa
81. | [41:37] | Em Wait, they might collide. A still collides, sono
82 J[41:43] |Isa No, but we need to change ...
83. Isa Stops animation at s= -0,5
84. | [41:48] | Em So we get it to start a little further down, then it might do like this. And A then, something, it will be before.
85. | [41:54] |Isa Yes, but it is s we have to change.
86. | [41.58] |Em Is it s we have to change then?
87. | [41:59] |Isa Yes, can we do like this that?
88. Types C = (2,0,55) and starts animation
89. 1[42:12] [Isa Ugh
90. 1[42:14] | Em Ugh, where did C go?
91. 1[42:19] [Isa C is gone. Oh, there it is, what is it doing ( C appears in 0,2 whens =<0)
92. | [42:27] [Em What?!
93. | [42:29] |Isa Oh, it’s because you can write it like that. Corrects C to C = (2,0.55).
Starts animation.
94. 1[42:42. |Em It is still moving parallel with 4, Isa
46]
95. 1[42:47] |Isa Yes, it is supposed to do that.
96. 1[42:50] | Em B and 4 still collides at the same time!
97. 1[42:53] [Isa Yes, but C is a little behind, C is half the time behind always, okay okay.
98. J[43:09] |Em So, can do it!
99. 1[43:10] |Isa Yes!
100.] [43:11] | Em Oh, so it was just a little too fast.
101.)[43:18] |Isa Yes, so can B be equel to €? ves it can.
102.] [43:24] | Em Good
103.] [43:25] |Isa Okay, then we have to explain it.
104.)[43:3 Em First, we must show when. Reads from task “if yes, when?"
105.] [43:35] | Isa Ehm, that is when s equals.. [observes animation]
106.] [43:44] |Isa That is when s equals 2.
43

249



Paper 5

Gregersen, R. M. (in review). Unveiling student’s tool use and conceptual understanding in the

prediction and justification of dynamic behaviors in Digital Experiences in Mathematics Education

250



Digital Experiences in Mathematics Education (2024) 10:47-75
https://doi.org/10.1007/540751-024-00134-z

)]
Check for
updates
Analysing Instrumented Justification: Unveiling Student’s

Tool Use and Conceptual Understanding in the Prediction
and Justification of Dynamic Behaviours

Rikke Maagaard Gregersen'

Accepted: 3 January 2024 / Published online: 29 January 2024
©The Author(s) 2024

Abstract

The study advances the insttumental approach to mathematics education (Drijvers
et al., 2013; Trouche, 2003), aiming to elucidate the interplay between students’ rea-
soning competency, conceptual knowledge and tool utilisation in dynamic digital
geometry and algebra environments. The dynamic properties of these environments
pose a nuanced predicament, as the outsourcing of translation between visual and
algebraic representations raises concerns regarding students’ conceptual develop-
ment and reasoning competency. To mitigate this issue, a prediction task is proposed,
focusing on the dynamic behaviour of variable points in GeoGebra. [ introduce a
comprehensive framework adapting Toulmin’s argumentation model into the instru-
mental approach, emphasising processes of justification. This is complemented by the
application of components of Vergnand’s (1998) scheme concerning generative and
epistemic ways to approach how students’ conceptual knowledge has played a part
in these processes. Through a case study of a student pair solving a prediction task, I
explare the links between instrumented justification, students’ mathematical reason-
ing competency and conceptual understanding, and how students’ use of GeoGebra
tools is intertwined with their justification processes. The analysis reveals the intri-
cate interplay between data production and interpretation, and it is grounded in infer-
ence drawn regarding students’ implied theorems about concepts, dynamic behaviour
and progression in terms of techniques. The results indicate that the progression of
technique is driven by the experience of the inefficiency of technicques and artefacts
related to the goal of justification. Hssentially, the framework links students’ reason-
ing competency to their use of tools and conceptual knowledge, as well as demon-
strates that predicting dynamic behaviour can enhance knowledge-based justification.

Keywords Justification - Instrumental genesis - Reasoning competency -
Dynamic geometry and algebra environment - GeoGebra - Variable - Prediction -
Lower secondary education
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Introduction

Today, most educational dynamic geometry environments (DGEs) allow the
symbolic manipulation of geometric constructions and graphic representations.
Geollebra stands out as a DGE that fully integrates the traditional features of
a DGE with the algebraic features of computer algebra systems, which is why
GeolFebra can be used as a dynamic geometry and algebra environment (DGAE)
with dynamic multi-representations (Hohenwarter & Jones, 2007). Dynamic
properties increase the ability to examine mathematical concepts and relation-
ships (e.g. Baccaglini-Frank et al., 2013; Nagle & Moore-Russo, 2013; Olive
et al., 2010) and improve ‘the reasoning, understanding, and conceptualization
of mathematical objects’ (Villa-Ochoa & Suarez-Téllez, 2021, p. 5). Dynamic
behaviour presents a dilemma, as, on the one hand, it allows students to create
and transform graphic representation through algebraic notation, which can oth-
erwise be a challenging task, making algebraic manipulation and transformation
more accessible to students (Hohenwarter & Jones, 2007), and, on the other hand,
the outsourcing of translation between representations can be problematic.

It is widely acknowledged in mathematics education research that handling
the various representations of a concept, including its associated processes and
objects, plays a significant role in mathematical reasoning and concept develop-
ment. For example, Sfard (1991) argues that shifting between representations of
the same object is a necessary step toward reification, and Duval (2006) believes
that being able to access and translate between different mathematical represen-
tations is crucial to all mathematical understanding and activity. Furthermore,
Duval worries that the outsourcing of the translation of representations deprives
students of an awareness of the one-to-one mapping between graphic visual val-
ues and algebraic terms.

Pedersen et al. (2021) suggest that, to address such issues, task designers could
require students to predict changes in these representations when using digital
technology. Moreover, students’ justifications tend to rely on empirical knowl-
edge (Harel & Sowder, 2007) or phenomenological evidence (Baccaglini-Frank,
2019). This tendency is enhanced by the dynamic properties of environments,
which allow students to interact and observe representations that appear as real
virtual objects that can be experienced phenomenologically (Baccaglini-Frank,
2019; Leung & Chan, 2006). In general, predicting results and strategies supports
the development of students’ reasoning abilities (Kasmer & Kim, 2011; Miragli-
otta & Baccaglini-Frank, 2021), which is why prediction tasks may address both
the translation of representations and students’ phenomenological tendencies.
Additionally, in this study, I hypothesise that predicting the dynamic behaviour of
objects in a DGAE allows students to reason about algebraic properties based on
their mathematical conceptual knowledge while still capitalising on the realness
of virtual objects and their dynamic properties.

In Denmark’s education system, the mastery of mathematics is considered
mathematical competence including mathematical reasoning competency as
described in the KOM framework (Niss & Hgjgaard, 2019) (KOM abbreviates
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‘Competencies and the Learning of Mathematics’). Research on the use of digital
tools in mathematics education’s interplay with the development of mathematical
competencies are becoming increasingly common (e.g. Bach, 2022; Geraniou &
Jankvist, 2019; Geraniou & Misfeldt, 2022; Hgjsted, 2021; Jankvist & Geraniou,
2022; Thomsen, 2022). Mathematical reasoning competency includes the spec-
trum of forms of mathematical reasoning across the scope of mathematical mas-
tery, from early mathematics education to expert mathematicians. This study
focuses on justification as a particular aspect of reasoning competency, as justifi-
cation is predominant in everyday teaching in mathematics classes in lower sec-
ondary education (age 13-16). Moreover, justification has been given little atten-
tion in the research on reasoning in general (Stylianides & Stylianides, 2022).

To address how students use tools in conjunction with their mathematical com-
petencies, prior studies (Bach, 2022; Geraniou & Jankvist, 2019; Thomsen, 2022)
have drawn on the instrumental approach to mathematics education (IAME) (Dri-
jvers et al., 2013; Trouche, 2003, 2004, 2005). This approach highlights how
tools become instruments used to solve mathematical tasks, but it does not delve
into the processes of justification. In a recent study by Gregersen and Baccaglini-
Frank (2022), we examined how the processes described in the IAME approach
can be analysed as a componence of justification processes by using an adapted
version of Toulmin’s (2003) argumentation model. However, we did not exten-
sively elaborate on the significance of students’ conceptual understanding in jus-
tification processes.

Additionally, the KOM framework (Niss & Hgjgaard, 2019) has no concepts
with which to analyse students’ knowledge and conception, but it does recognise
them as ingredients in mathematical competencies as the exercise of any math-
ematical competency involves some subject matter. In order to expand upon the
conceptual aspect of students’ justification processes in conjunction with digital
tools, Geraniou and Jankvist (2019) have taken initial steps by suggesting that
schemes (Vergnaud, 1998) as the cognitive component of the IAME may be use-
ful in articulating ‘the role of conceptual knowledge in relation to the mathemati-
cal competency’ (Geraniou & Jankvist, 2019, p. 41). If so, it might be possible
to link students’ conceptual knowledge and development, reasoning competency
and tool use by analysing students’ schemes. Accordingly, this study aims to
explore how students use tools in a DGAE in justification processes when pre-
dicting dynamic behaviour from both a reasoning competency and a conceptual
perspective.

The framework and context of the study are further elaborated below, after
which the aim will be concretised into two research questions. The explorations
are then conducted as a case study (Thomas, 2011b) of the justification process
of a pair of students solving a prediction task embedded in a restricted GeoGe-
bra environment. The case is analysed in three steps. First, the potentials and
constraints (Trouche, 2005) of the relevant tools are considered, followed by an
analysis of the students’ justification process and tool use using an adapted Toul-
min’s model {Gregersen & Baccaglini-Frank, 2022). Finally, the students’ process
is analysed with regard to the components of the scheme (Vergnaud, 1998).
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Theoretical Framework
Reasoning Competency, Arguments and Justification

The KOM framework defines a mathematical competency as ‘someone’s insightful
readiness to act appropriately in response to a specific sort of mathematical chal-
lenge in given situations’ (Niss & Hgjgaard, 2019, p. 14; italics in original). Out of
eight distinct competencies, this study is confined to the reasoning competency. Stu-
dents exercise reasoning competency when they analyse or produce mathematical
arguments (Niss & Hgjgaard, 2019). This can consist of oral or written arguments in
various forms, in this case, justification. An argument is a chain of statements linked
by inference in support of mathematical claims or solutions to mathematical prob-
lems (Niss & Hgjgaard, 2011, 2019).

A person’s competency is an evolving situated entity that is developed over time
through active participation in mathematical situations. Competency development
involves expanding the degree of coverage, radius of action and technical level.
Coverage pertains to the different aspects of a competency, such as active participa-
tion in various forms of reasoning. The radius of action considers the diverse con-
texts in which the competency can be applied, spanning various domains and social
situations. The technical level addresses the sophistication of concepts, theories and
methods.

Justification is the process of supporting mathematical claims and choices when
solving problems when students are asked to explain and warrant their answers
concerning a given problem (Stylianides & Stylianides, 2022). In all mathematical
reasoning, arguments are put forward to change the epistemic value (the degree of
certainty) of a claim (Duval, 2007). The epistemic value can be considered from the
perspective of the reasoner or the general mathematics community (Duval, 2007;
Harel & Sowder, 2007; Jeannotte & Kieran, 2017; Knuth et al., 2019).

Considering an argument from a structural standpoint, Toulmin (2003) suggests
a geometric structured model (see Fig. 1), considering what constitutes a valid argu-
ment from epistemological and psychological perspectives. Toulmin’s argumenta-
tion model structures the fundamental components of an argument, including the
claim, qualifier, data and warrant. A claim is a statement along with its epistemic
value (i.e. qualifier). The qualifier expresses the probability of the claim (e.g. false,

Data » Qualifier | Claim

Warrant ¥

Rebuttal

Fig.1 Geometric structure of the elements of an argument (Toulmin, 2003)
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possible, more possible or true) and is established based on evidence (i.e. data that
supports the claim and the warrant, which connects the data to the claim). Finally,
the rebuttal limits or counters the claim.

The Instrumental Approach to Mathematics Education

The IAME conceptualises how a tool becomes an instrument for solving mathemat-
ical tasks through the process of instrumenial genesis (Artigue & Trouche, 2021;
Trouche, 2003). The process comprises a subject (from here on, a student) and a
material or non-material artefact. The student knows objects or concepts particular
to the situation and the use of artefacts. The artefact mediafes the students’ actions
on objects, which are influenced by the potentials and constraints of the artefact. As
the student uses the artefact, it becomes a tool for a particular situation or task. This
could be using a polygon tool {the artefact) in a DGE to construct a triangle {a task
conceming an object). Instrumental genesis has a dual nature: instrumentalisafion
and instrumentation. Instrumentation is the constraints and possibilities imposed on
the student’s actions, while instrumenfalisafion is the student imposing a personal
use. Over time, as the student uses the tool for similar situations, the process of
instrumental genesis unfolds to develop an irstrument. An instrument is a cognitive
unit that consists of both scheme and arfefact.

Schemes concern perceptual and gestural goal-oriented activities in ‘the invariant
organization of behaviour for a certain class of situations’ (Vergnaud, 1997, p. 12).
Schemes include a generative component: rules-of-acfion, which shape behaviour
based on situational variables. The purpose of rules-of-action is not to be true, but to
be effective. In addition, schemes include the conceptual components of the opera-
tional invariants: theorems-in-action about concepts-in-action. Theorems-in-action
are often not explicitly stated, but rather held-ro-be-frue statements that, according
to mathematical theory, can be true or false. Theorems-in-action provide insight into
the world of objects: the concepts-in-action that can be relevant or irrelevant to the
situation or task.

Moreover, invarigns behaviour is relative as schemes are adapted by inference
pertaining to contexts and circumstances (Pittalis & Drijvers, 2023; Vergnaud,
2009). This relativism reflects the instrumental genesis as an instrument develops
over time. In the same manner, the stability in a scheme for a certain class of situa-
tion is reached over time. Consequently, the schemes of students using an unfamil-
iar artefact or solving an unfamiliar task will be less stable, rules-of-action may be
ineffective and theorems-in-action may be wrong (Ahl & Helenius, 2018). Finally,
Vergnaud (1998) emphasises the significance of possibilities of inference within
schemes, acknowledging that inference and computation are inherent in any activity.

In the TAME, the conceptual aspect of the epistemic use of tools is preva-
lent (Shvarts et al., 2021). For example, Drijvers et al. (2013) consider the dual-
istic process of activity and conceptual knowledge as a fechrigue-scheme duality
in the instrumental genesis process. Epistemic use is most often explored through
the identification of the invariant behaviour across users of an artefact and the con-
ceptual understanding underlying different usage schemes. Alternatively, through
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the analysis of the operational invariants of students’ developing schemes, Rezat
(2021) explicates the students’ rationales as expressions of knowledge. Such insight
is indeed relevant in justification processes. Thus, by adopting a similar approach to
that of Rezat, the scheme-technique duality can provide insight into the co-evolu-
tion both of conceptual development and of justification in the instrumental genesis
process.

Rabardel argues that, ‘it is necessary to analyze and understand what these activ-
ities are from the perspective of the users themselves’ (2002, p. 31). Indeed, this
is a prominent concern. Therefore, I take an inclusive approach to technique, one
encompassing all gestures involved in student tool use, including hand movements,
direct interactions with the artefact and verbal expressions of imagined activity. In
addition, oral explanations of action can provide insight into concepts- and theo-
rems-in-action (Rezat, 2021), since ‘enunciation plays an essential part in the con-
ceptualization process’ (Vergnaud, 2009, p. 89).

Instrumented Justification

Traditionally, the IAME has been applied to analyse students’ learning techniques
when solving particular mathematical problems utilising a digital tool, such as deter-
mining the solutions to an equation utilising CAS (e.g. Artigue, 2002; Jupri et al.,
2016). In this case, students utilise GeoGebra to predict the translation of symbols.
Furthermore, students may present arguments in support of or against certain claims
arising from their solution process. In order to capture such processes, Gregersen
and Baccaglini-Frank (2022) introduced an analytical tool by reinterpreting Toul-
min’s model, in light of the scheme-technique duality, and termed the process instru-
mented justification (1J). Based on this analytical tool, 1J is described as ‘a process
through which a student modifies the qualifier of one (or more related) claim(s)
using techniques in a digital environment to generate and search for data and war-
rants constituting evidence for such claim(s)’ (Gregersen & Baccaglini-Frank, 2022,
p. 135; italics in original). An elaboration of the analytical tool is provided below.
Please refer to Fig. 2.

Toulmin’s model is most often applied in mathematics education research to ana-
lyse a finalised argument or chains of sub-arguments. However, in the 1J analytical

Current claim:
Qualifier Claim

=i Qualifier Re-claim

Techniques Data Warrants

Rebuttal

Fig. 2 Adaptation of Toulmin’s model into an analytical tool for students’ instrumented justification
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tool, the unit of analysis is the process from a claim to a restatement of that claim,
along with a change in the qualifier. The students generate data through techniques
as evidence to support or refute the initial claim, and change the qualifier from
‘possible’ to ‘more possible’, ‘less possible’, ‘true’ or ‘false’. The close connec-
tion between data and techniques appears in the analytical tool as connected frames
correlating a technique to the data it produces. The schemes (Vergnaud, 1998) that
direct and organise techniques generating data contain conceptual elements and
rules that regulate actions that are seen as warrants that connect the data to the claim
and can be inferred from students’ techniques and verbal expressions (Rezat, 2021).

Figure 2 shows a generic diagram of the IJ analytical tool as an adaption of Toul-
min’s model. In continuous sub-processes, the first uttered claim, along with its
qualifier, is noted in the top right corner in grey, so below is the re-claim with a new
gualifier. Finally, the rebuttal consists of the limitations of the claim or counterargu-
ments as in Toulmin’s (2003) original model.

A Prediction Task to Situate an Instrumented Justification Process

The task presented in Fig. 3 originates from a sequence of tasks developed dur-
ing my Ph.D. study. Collectively, the sequence explores a microworld of variable
points in GeolGebra, which are ordered pairs containing a variable in more or less

A S e Q

-3

-4

Points can have a variable in the coordinates like these two points: A = (1, &) and B = (s, [), where s is a variable.

1. Show in the co-ordinate system how you think points A and B move when s changes value. (You can use the tools
in the toolbar; right-click and use the tools there.)

2. Justify your hypothesis — why do A and B move as you claim?

Fig.3 Abcove is the restricted interface of a GeoGebra app for predicting the movements of points A and
B, presented in the orange box: the available tools are ‘move’, *point’, ‘pen’ and ‘erase’, and below are
the questions posed
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complicated algebraic expressions. The current task is the first prediction task in the
sequence.

In question 1, the students are required to predict how the variable points will
move in the co-ordinate plane, which the students must visualise and explain using
a highly restricted interface in a GeolGebra app. The restrictions are enforced to pre-
vent students from constructing the points by typing them into the algebra view. The
tools available are ‘move’, ‘point’, ‘pen’ and ‘erase’. The student can turn on the
trace of constructed points to trace any dragging of the point. In question 2, the stu-
dents must justify their predictions in writing in a Word document. Research has
demonstrated that prompting students to predict outcomes can encourage math-
ematical reasoning using previous knowledge (Kasmer & Kim, 2011; Lim et al.,
2010). Some research studies students’ prediction as a product or the processes by
which predictions emerge (Miragliotta & Baccaglini-Frank, 2021). I follow the lat-
ter approach, viewing student predictions as an instrumented justificarion process
and treating predictions as claims about assumed dynamic behaviour in GeoGebra.
Unlike traditional positions of prediction in mathematics education as a statement
or conjecture anticipating either the solution to the problem or the strategy used
to reach a solution (e.g. Boero, 2002; Kasmer & Kim, 2012; Palatnik & Dreyfus,
2019), the intention in this case is to leverage predictions and thus give ‘students the
opportunity to defend or refute ideas” (Kim & Kasmer, 2007, p. 298). Consequently,
[ consider the prediction task as a problem in itself, one that requires students to
engage in IJ and operationalise their knowledge about variables and dynamic behav-
iour in GeoGebra.

Inspired by physics education, the prediction task involves anticipating outcomes
in a way that is akin to experimental testing (Hgjsted & Mariotti, 2021; White &
Gunstone, 1992). The dynamic behaviour of objects in (eoGebra creates the
impression of real virtual objects, simulating movement and behaviour comparable
to physical objects that can be experienced phenomenologically (Baccaglini-Frank,
2019; Leung & Chan, 2006). The prediction of such dynamic behaviour can be
tested in the environment. In fact, although not part of the case presented, following
the prediction task, the students are asked to test their predictions and consider the
outcomes.

Student Knowledge of Variables and Dynamic Properties

In the prediction task, the concept of the variable is central. [ will briefly elaborate
on the concept of variables from a conceptual perspective and in relation to dynamic
behaviour in DG{A)Es. The dual nature of concept formation and development in
mathematics education research, which involves processes and objects, is widely
recognised (Douady, 1991; Dubinsky, 1991; Noss et al., 2009; Sfard, 1991). For
young students, concepts are initially tied to processes within specific numeric situa-
tions. Ideally, these concepts evolve into abstract objects, enabling the exploration of
structures and relationships (Douady, 1991).
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Concerning variables, Noss et al. emphasise that generalisation involves moving
beyond the specific, recognising the structural properties, relationships and patterns
that variables (and constant) represent. Introducing variables often marks students’
first step into objectification, requiring them to perceive a letter as representing all
values subject to the same computational manipulation as numeric values. In addi-
tion, Noss et al. (2012) problematise the static representations of paper-and-pencil
tasks, arguing that such representations hinder students’ progression in conceiving
variables as ‘the inevitably static (and therefore specific) figure that can be presented
on paper is often problematic for students as it lacks a rationale for thinking gener-
ally’ (p. 64).

The dynamic behaviour of objects in a DG(A)E reflects the process—object nature
of concept formation as either a discrete collection of examples or continuous move-
ment. Indeed, Miragliotta and Baccaglini-Frank (2021) describe that, in predicting
dynamic objects, students may pin-point specific positions or envision, enact or
imitate continuous movements. This also holds true for variable points, which can
shift between positions in a co-ordinate plane or move along a trajectory. In a fully
generalised conception, a variable point transcends dynamic properties, taking on
the form of a line. The structural properties are then defined by the position of the
trajectory or a line in relation to the co-ordinate system and other variable points.

Research Questions

After explaining the theoretical frameworks and laying out the task details, the
research aim can be formulated as specific research questions:

In predicting the dynamic behaviour of variable poinis in a resiricted GeoGe-
bra emviromment, how can students’ use of the point fool, frace function and
pen tool interplay with thetr Justification processes?

To what extent can an analysis of the components of the student’s scheme
provide links between the process of instrumented justification, the student’s
mathemaiical reasoning competency and concepfual knowledge?

Research Design and Method
Design of a Case Study

This study aims to conduct a fine-grained analysis of the conceptual evolution of stu-
dents engaged in IJ to link reasoning competency, tool use and students’ conceptual
knowledge. To achieve this objective, the study is designed as a case study of a sin-
gular key-case (Thomas, 2011b) that will follow the IJ processes and the evolution
of schemes. The case is presented as a temporal account (Thomas, 2011b), based on
transcripts of students’ utterances, descriptions and pictures of gestures, and screen-
shots of their computer screen that capture specific moments. The case provides the
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reader with contextual insights into the development of the use of particular tools for
the prediction of dynamic behaviour, by exemplifying the intricate development of
such a process (Thomas, 2011a). Furthermore, the case demonstrates the potential
of the described task to provide a context for students’ IJ justification processes.

The case consists of the 1J processes of the two students, Lev and Rio, who were
collaborating on solving the prediction task. This pair was chosen because the stu-
dents engaged in an IJ process characterised by the development of their tool use
and their prediction. In particular, Lev was verbal about his assumptions through-
out the process, making it possible to infer his warrants. Lev and Rio regularly use
Geolebra in mathematics class, though they mainly use the graphic view and geo-
metric tools, including points and tracing. They have only used the algebra view
to provide information on constructed objects. In the introductory part of the task
sequence, students were introduced to constructing static points through the algebra
view. In class, they have been introduced to the definition of a variable as an expres-
sion of all values, and procedures concerning variables in equations, functions and
formulas. The pair was acquainted with plotting points on the co-ordinate system
but had no experience with variable points before the experiment.

Regarding reasoning competency, the prediction task requires the students to
expand their radius of action, as variable points are a new task. Concerning cover-
age, the students have experience with justification processes and prediction from
their regular mathematics classes, mostly in the form of estimating the results of a
computation. Concerning the technical level, Rio and Lev have no experience justi-
fying variables as generalised numbers.

Data Collection

Data were collected from a class of 7th-grade students aged 13 to 14 during a class-
room experiment. To encourage the students to express their assumptions and jus-
tifications, they were paired up and shared a computer to solve the task sequence.
Additionally, the students were instructed to verbalise their thoughts and arguments
while solving the tasks. OBS studio was used to capture the students’ screen, voices,
faces and upper bodies on video recordings during the experiment. In the classroom,
the mathematics teacher and I were present to assist students with any questions or
issues they may have had while completing the tasks. The video recordings were
transcribed. The gestures were described and, if necessary, accompanied by images.

Data Analysis
The theoretical framework examines the case from three perspectives: the artefact,

II and conceptual understanding. Each perspective also divides the analysis into
three steps.
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In step 1, following the IAME, I describe each of the three artefacts to have a
clear understanding of the limitations and constraints of the available artefacts in
terms of solving the task (Drijvers et al., 2013).

In step 2, T analyse the case using the analytical tool for IJ processes. The
IT model’s components are identified using a theory-guided structured coding
approach (Mayring, 2013). The categories were developed and revised in a cyclic
process until applicable across students’ 1J processes. Claims and re-claims are
identified and constitute the analysis unit. A claim is an uttered tentative or final
solution to the task, and a reclaim is an uttered statement similar to or referenc-
ing the claim along with an implied change in epistemic value. Any rebuttal is
then identified. Techniques are then identified in the unit together with the cor-
responding data produced. Techniques can be performed or imagined in verbal
expression. The data is the products of students’ interactions with an artefact and
their verbal interpretations of the data produced as evidence for or against the
claim. The change in the qualifier of a claim is inferred from the students’ actions
and utterances, such as hesitation or continued search for data, which can indi-
cate a lack of conviction in the claim’s truth. Inferring warrants is a demanding
process that requires interpreting how students’ techniques and the data produced
are relevant to the claim. Warrants are typically implicit, so formulating them is
an explicating procedure and requires a narrow qualitative content analysis (May-
ring, 2015). The formulation of warrants is revisited to ensure consistency with
the source data in videos and transcripts.

Step 3 categorises warrants as either rules-in-action or theorems-in-action.
Then, the order of appearance of theorems-in-action is used to infer the ‘pos-
sibilities of inference’ drawn between theorems-of-action concerning different
concepts-in-action. The analysis method is further addressed and discussed in the
step 3 of the ‘Analysis’ section.

Analysis

Step 1: Analysis of the Potentials and Constraints of Tools Specifically Regarding
the Tasks

For the prediction task, students must anticipate the dynamic behaviour of points
A=(1, s) and B={(s, 1) in the restricted interface. This requires translation from
symbolic to graphic representation, which is typically outsourced. To aid in this
process, students have access to the move tool, the point tool, the trace function
and the pen tool. The point tool enables the placement of free points on the coor-
dinate plane, allowing subsequent movement using the move tool. When using
the point tool, students must assign numerical values to each point they place. For
example, A=(1, 5) is expressed as a singular case. Multiple values of the variable
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(s) can be depicted by plotting several points, shifting a single point or activat-
ing the trace function, which leaves a track of points where the point is dragged
across the screen. However, tracing can be challenging when moving a free object
as it is susceptible to cursor movements. The point tool and trace function are
specifically designed for mathematical objects and properties. In contrast, the pen
tool allows free drawing, requiring students to apply mathematical properties or
functionality, such as the notation of values, sketching, plotting, tracing points or
drawing lines.

Step 2: Analysis of the Instrumented Justification Processes

Here, I provide an analysis of Rio and Lev’s IT process. It is presented as two sub-
processes: the first proces is captured in la (Figs. 4 and 5) and 1b (Figs. 6 and 7),
and the second in subproces 2 (Figs. 8 and 9). The first sub-process is lengthy and is,
thus, divided into excerpts 1a and 1b to make the analysis accessible. Fach excerpt
includes a transcript, screenshots of the students’ work in GeoGebra and an ana-
Iytical IJ model. Between sub-processes 1b and 2, a brief intermission is described,
which is not considered significant for the overall process.

In the II analysis model, warrants are labelled according to concepts (WV for
variable and WP for ordered pairs or points) and numbered according to appear-
ance. As warrants reappear in the process, they are referred to by these abbrevia-
tions. If warrants are challenged of the two students, the warrant is assigned to the
student expressing the specific warrant. In the transcripts, I am referred to as Me,
gestures are described in square brackets and author notes are in italics. Rio is in
control of the shared computer and mouse in all excerpts.
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Instrumented Justification Sub-processes 1a

1  Me Youneed to use these tools up here [gestures at
tools in the tool bar] to show me how these
points behave [gestures at points A and B in the
orange box in GeoGebral.
2 Rio Butshouldn’t we then plot the points?
3 Me It’suptoyouhow you want to do it.
4 Rio Buthow canwe do that when we can’t write that
A equals 1? [referring to the algebra view]
5 Me Then you will have to try to show it. This one
[gestures at pen tool] can draw, and this one
makes points [gestures at point tool].
6 Rio So, should we just say that s = equals something?
7 Me That’s up to you
8 Rio sequal [draws “s =" with pen tool] _ -
9 Lev Ten, eleven, nine, no nine. 2 S & =
10 Rio We say four, like this. s equals four, right? -s; \1’
[draws “s = 4” with pen tool]
11 Lev Boring.
12 Rio Then we can place a point that should be one
[picks point tool and ‘plots’ by moving the
cursor to one on the x-axis, then moving four up
the y-axis].
13 Lev And then four.
14 Rio Here [places point A in (1, 4)].
15 Rio The other one is then s [counts four right and one
up with the curser, then places point B in
*. D).
16 Rio Every time one shifts one place, the other one ~
also shifts one place, so they keep moving e
further and further away from each other at a 3|1
ninety-degree angle [moves curser from approx. pist
(1, 1) towards A and then back to approx. (1, 1) A
towards B. Then, gestures with hands forming 1 \l/é = = B
90 degrees with wrists touching and moving his | &
hands outwards in each direction]. Ppes ! Pletias Fiag

Fig.4 (a) The state of GeoGebra after excerpt 1; (b) illustrates the movement done with curser; (¢) Rio’s

hand gesture
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» Qualifier: Possible
" " |

Techniques

Data

Claim 1:

Every time one (point) shifts one
place, the other one also shifts
one place, so they keep moving
further and further away from
each other at a 90-degree angle

Warrants

Pick a value for s
and plot points with
the point tool

If s=4,then A=(1,4)and
B = (4,1) represented by
points in the coordinate

WP1: Ordered pairs of numbers
correspond to the x-coordinate
and y-coordinate of a point in the

positions of points
A and B as s
increase in value
from 1 (line 16)

(line 10-15) plane coordinate plane
WV1: A variable should take a
random value
WV2: A variable represents the
same value wherever it appears
within the same problem
Imagining Imagined sets of points for WV3: When the variable change it

A and B, for s = [1 — 4]
forming a right angle in
(1.1

increase in value

Fig.5 Instrumented justification sub-process la through the lens of the analytical tool
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Instrumented Justification Sub-process 1b

17 Rio We can show how they start here by saying that s
equals one [picks ‘move; tool, and moves both
points to (1, 1}].
18 Rio Then, they are here, if s equals two [moves A: (1,
2)and B: (2, 1)].
19 Rio [Right clicks, turns on the trace for both points,
then drags and traces B: (2, 1) — (9, 1).]
20 Lev Thatis very straight [ironic about the trace].
21 Rio Ah, no! [Drags and traces B along the exiting
trace towards 0 but messes up the trace. Clicks
“back arrow,” and the trace disappears. A: (2, 2)
B: (9, 1).]
22 Lev What are you doing?
23 Rio [Drags and traces B: (1, 1) — (9, 1) then A: (1,2) — J =
(1, 1).] But it cannot go any further down, as we S= Y
have decided that it [s] should be one. e
24 Lev Yes,but it can go just as high or? Up to four, e
right?
25 Rio Hal [Drags the point upwards along the y-axis but /8 =
messes up the trace again.]
26 Lev Itcan go up to four.
28 Rio Weneed to do this, as we have to show it. [Drags
and traces A: (1,2)— (1, 5)and B: (2, 1) - (7.5,
1).]
29 Lev Justup to four.
30 Rio No! [Clicks on “back arrow”. The trace is gone.
A:(l,5)and B: (2, 1).]
31 Rio But, itis notup to four [turns off the trace
function for both points].
32 Lev Yes,itis.
33 Rio No, s can just as well be other than four [drags A :
(1, 5)—(1, 2)].
34 Lev Youjust wrote s equal four.
35 Rio Yes, yes, but if you change s, then s can shift
[beyond four].
36 Lev But, youdid not change s, did you?
37 Rio No [picks “pen” tool].
38 Me What are you boys trying to do now?
39 Lev_To show how.
40 Rio So, it shifts like this. Every time they shift, they 2 =
shift away from each other [draws line for A’s S= Y
trajectory: (1, 1) — (1, edge of view) and B’s R
trajectory: (1, 1) — (edge of view, 1)]. 0L e e
7’
41 Lev Then we need to explain it.

Fig.6 (a) Traces of points A and B ‘starting’ in (1, 1); (b) messing up the trace; (¢) drawing trajectories
of A and B limited by the ‘starting point’ in (1, 1)
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Current claim:
Qualifier: Possible Claim 1: Every time one (point)
shifts one place, the other one also shifts one
place, so they keep moving further and further
away from each other at a 90-degree angle
Re-claim 1: It shifts like this (as
— drawn and gestured). Every time
,| Qualifier: . they shift, they move away from
more possible | oo other
Technique Data Warrant
Move the plotted|Ifs=1,then A=B=(1,1) WV1,2,3
point to a new|represented by points in
position the co- ordinate system WP2: The shared position Rebuttal:
corresponding to the between points is a “starting point” The starting
change in the value|«hey start out here* pointis (1,1)
of the variable (line which is also
17-18) a limit

If s=2,then A=(1,2)and
B = (2,1) represented by
points in the co-ordinate
system

Activate the trace of
points

Drag a point to trace
its movement

Click the Back arrow
when tracing goes
wrong

(line 19-36)

Trace of A:
[(1,2);:(1,1)]
[(1.2);(1,5)]

Trace of B:
[2,1); (9,1)]
[, 10,101 1(2,1)(7.5,1)]

WV4: The variable should take on
an interval of values

WP3: An ordered pair with a
variable corresponds to a set of
points in the coordinate plane

It (the trace) cannot go any
further down, as we have
decided that it (s) should
be 1

It can go up to four

No, s can just as well be
other than four

WP4: A set of points is limited by
the values we pick for the variable

Lev: WP4
Rio: WV5: The variable can

increase infinitely but is limited by
the “starting point”

Draw the trajectory of
points with pen (line
40-41)

Drawn line for A’s
trajectory:

[(1,1) —(1, edge of view)]
and

B’s trajectory:

[(1,1)— (edge of view,1)]

(Both) WV5

WP5: An ordered pair with a
variable correspond to a set of
points in the coordinate plane but
are limited by the “starting point”

Fig.7 Instrumented justification sub-process 1b through the lens of the analytical tool

Between Instrumented Justification Sub-processes 1b and 2

The students assert the claim by expressing that they have now shown how the points
move and go on to the next task, justifying their prediction, which requires a writ-
ten answer in a Word document. They begin by referencing WV2 and restating the
claim, but then Rio seems to realise that their claim is faulty and returns to GeoGe-
bra to reconsider their answer to question 1. Then, Rio’s following ‘monologue’
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occurs, leading to a new claim (claim 2). As Lev is only observing in this excerpt,
it is impossible to infer whether he shares the listed warrants. The written answer is

not revisited.

Instrumented Justification Sub-process 2

42

Rio

‘When one point changes and s becomes higher
or lower, it moves the point back and forth,
and then the other point moves in the opposite
direction [perpendicular]. We know that they
have one. This we said before also. So that is
why they cannot move further than this [points
curser at approx. (1, 1)].

43

44

Rio

Rio

Or actually, they can. For example (1, 0), it is
like this. They can actually move like this
[prolongs both of the drawn lines through axes].

We know that they have the number one, so they
cannot — they cannot [circles the cursor at the
intersections of the drawn lines and axes], but
they can change in this direction [cursor moves
back and forth on the trajectory of A] because s
can be infinite.

A

m

45

Rio

And actually, they can also move in this
direction if s becomes negative [prolongs both
of the drawn lines into negative co-ordinates for
s: A’s trajectory : (1,-3)— (1, edge of view), B’s
trajectory : (-3, 1) — (edge of view, 1)].

m

46

Rio

But they will always be one away [from the
axes], and then they can just change infinitely
because of s.

Fig.8

(a) Extending trajectories to 0 on axes; (b) extending trajectories into negative numbers
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Current claim:

Qualifier: more possible Claim 1: Every time one
(point) moves one place, the other one also moves
one place, so they keep moving further and further
away from each other at a 90-degree angle

Claim 2: they will always be 1
away (from the axes), and then
they can just change infinitely
because of s.

Qualifier:
Possible*

Technique

Data

Warrant

Imagining the
trajectory of points A
and B as s increase
and decrease (line
42)

Imagined points moving
back and forth on the
drawn trajectories: A
trajectory: [(1,1) —(1, edge
of view)] and

B’s trajectory:

[(1,1)— (edge of view,1)]

The starting point (1,1) is a
limit for the trajectories

WV6: The variable can increase
infinitely and decrease to the limit

WP2’: The shared position
between points is a “starting point”
defined by the common constant
in the ordered pairs

WP5

Draws the trajectory
of points with pen
(line 43)

Drawn line for A’s
trajectory:

[(0,1) —(1, edge of view)]
and

B’s trajectory:

[(0,1)— (edge of view,1)]

The points seem to move
through the starting point.

WP6: An ordered pair with a
variable corresponds to a set of
points in the coordinate plane,
which can include the “starting
point”

WVT7: The variable can increase
infinitely and decrease to O
beyond the limit

Imagining the
trajectory of points A
and B as s increase
and decrease (line
44)

The starting point (1,1) is a
limit for the trajectories

Imagined points moving
back and forth on the
drawn trajectories

WP2’
WP5
WV6

Draws trajectory of
points with pen

Drawn line for A’s
trajectory:

WV8: The variable can infinitely
increase and decrease

trajectory of points A
and B as s increase
and decrease (line
46)

back and forth on infinite
trajectories: A’s trajectory:
[(,1) — (1, )] and

B’s trajectory:

[(e, 1) (=, 1)]

(line 45) [(-3,1) —(1, edge of view)]
and WP7: An ordered pair with a
B's trajectory: variable corresponds to an infinite
[(-3,1)— (edge of view,1)] set of points on a trajectory in the
’ ’ coordinate plane
There is no starting point
Imagining the [Imagined points moving WP8: A constant in an ordered

pair corresponds to the constant
distance to the corresponding axis
of a trajectory

Fig.9 Instrumented justification sub-process 2 through the lens of the analytical tool (as the student
instrumented justification process continues into the testing step, the epistemic value of the claim is only

possible)

Evolution of the Elements in the |J Process

Rio and Lev put forward two different claims:

e (Claim 1: Every time one (point) shifts one place, the other one also shifts one
place, so they keep moving further and further away from each other at a 90-degree
angle (with the rebuttal ‘the starting point is (1, 1) which is also a limit’).
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¢ Claim 2: They will always be one away (from the axes), and then they can just
change infinitely because of s.

When claim 2 is presented, it causes claim 1 to become less credible and ulti-
mately be proven false. The two claims are not contradictory; instead, the second
claim extends the first. The patterns of the trajectories are consistent in being per-
pendicular along the axes. However, the description evolves from only having posi-
tive directions in the first claim to having both positive and negative directions. Con-
sequently, the limit is refuted. In sub-process la, claim 1 is based solely on data
with s=4 and the corresponding positions of points A and B. Rio imagines how
the points will move from the starting point of (1, 1). Although Rio does not explic-
itly state why this is the starting point, it is later labelled as such in 1b and can be
inferred to WP2. In sub-process 2, line 42, Rio explains that the constant within the
ordered pairs defines the starting point. This understanding may have already existed
in la. Therefore, WP2 can be specified as WP2?,

I now return to sub-process la. The techniques encompass plotting points with
the point tool corresponding to a chosen value of the variable and imagining the
position of points. In sub-process 1a, the warrants WV1, 2, 3 and WP1 are inferred.
In sub-process 1b, Rio produces data to support claim 1 by moving the points to
different positions corresponding to other variable values. He then changes his tech-
nique and traces through the dragging of points to generate sets for each point. The
shift in technique also evolves WV1 into WV4 and WP1 into WP3. The tracing
spurs a discussion between the two students about whether the initially chosen val-
ues of the variable (four and one) are also the limits of the trace. Though struggling
with the trace function, Rio realises that the limit of four is unjustified, as he can
continue the trace for higher values of s, evolving the warrant WV4 into WV5, At
this point, Rio changes the technique again as he continuously struggles with trac-
ing. Instead, he draws the trajectories with the pen tool from the ‘starting point’ in
positive directions to the edge of the graphic view. The limit of one is maintained,
which can be explained by WP2’, though this has not vet been expressed, and WP3
evolves into WP5. [ will address Rio’s thinking further in the coming analysis of the
development of the components of schemes.

In sub-process 2, Rio recalls that the variable can both increase and decrease in
value, which is inferred to WV6. The realisation seems ultimately to unravel the
issues regarding the starting point, as the limit is moved to 0 and then infinitely into
negative numbers. This process is expressed in warrants WP6, WV7, WV8 and
WP7. Each relates to generating new data as the trajectories are elongated. This pro-
cess resolves the issues concerning the limit of the variable, and claim 2 is con-
ceived of, in which s is infinite, and the points can ‘move’ infinitely on the trajec-
tories. In line 44, Rio struggles to discard WP2, even though it conflicts with WVeé
and WP6. However, ultimately, Rio reinterprets the constants in the ordered pairs as
the trajectories’ distance from the axis, and WP2 evolves into WPS.
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Step 3: Warrants as Windows on the Components of Students’ Schemes

I now turn to the evolution of warrants in the IJ process, by considering the com-
ponents of the scheme (Vergnaud, 1997, 1998) as the students’ progress in their 1T
process. In the excerpts, Rio is both the active user of the tools and the most articu-
late. Consequently, most inferred warrants can be connected to his schemes alone. In
sub-process la, Lev does challenge Rio’s justification about the limit of four, which
shows us a little about Lev’s warrant at that specific point in the process. We cannot
know the extent to which Lev assimilates his warrants according to Rio’s justifica-
tion; we can only observe that Lev does not object any further. Thus, in the follow-
ing analysis, I will only consider Rio.

Remember that schemes are goal-oriented concerning the task at hand (Verg-
naud, 1997)—in this case, the goal is putting forward a predicion and Justifving
that prediction by changing the epistemic value. Such activity involves both rules-
of-action and theorems-in-action about relevant concepts-in-action: variables and
ordered pairs as points in the co-ordinate system. Thus, it is possible to elaborate
on warrants as rules-of-action generating techniques relying on theorems-in-action
about concepts.

Rules-of-Action

Recall that rules-of-action are implicit propositions concerning the appropriateness of
actions for a particular situation (Vergnaud, 1997, 1998). Consequently, rules-of-action
can be appropriate and efficient, or irrelevant or inefficient. Some inferred warrants
(see Appendix 1) can be considered rules-of-action as they are mobilised into differ-
ent techniques. The warrants WV1: ‘A variable should take a random value” and WP1:
‘Ordered pairs of numbers correspond to the x-co-ordinate and y-co-ordinate of a point
in the coordinate plane’ are mobilised as techniques for plotting points for randomly
picked values of the variables, initially, by counting the distance from the axes to place
points A and B in the co-ordinate plane and, then, as imagined points in the co-ordinate
plane or by moving the points to new positions in the co-ordinate plane corresponding
to other random values of the variable. However, these plotting techniques are deemed
ineffective in sub-process 1b. Instead, the rules-of-action WV4: ‘The variable should
take an interval of values” and WP3: ‘An ordered pair with a variable corresponds to a
set of points in the co-ordinate plane” are mobilised as techniques for sketching trajecto-
ries. At first, this is done by tracing and moving a point, but, as the tracing is difficult to
control, this is too ineffective. The rules-of-action are, however, still relevant and they
are mobilised as drawing trajectories with the pen tool instead.

Inferences Drawn Between Theorems-in-Action About Concepts-in-Action

Now, let us tum to the heorems-in-acfion (Vergnaud, 1997, 1998). Recall that the-
orems-in-action are held fo be frue propositions about concepts-in-action. Clearly,
concerning mathematical theory, theorems-in-action can be false, partly true or true.
The warrants not already identified as rules-in-action are theorems-in-action (see
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Appendix 1). In the students’ 1J process, most theorems-in-action are false, or only
partly true propositions, and are disregarded during the IJ process, starting from
WV3 until the students reach the true proportions of WV8 and WP74 8 in sub-
process 2. However, in sub-process 1a, WV2: ‘A variable represents the same value
wherever it appears within the same problem’ is true and undergoes no evolution. Rio
mobilises this theorem-in-action to interpret the co-variance of the points as a pattern
of perpendicular trajectories, which remains consistent throughout the IJ process.

To reach a justified prediction, Rio uses inference possibilifies to infer properties
about concepts-in-action. In the following analysis, [ attempt to understand better
Rio’s I process by suggesting what inferences he has made. I do so by consider-
ing the order of appearance (see Appendix 1) of the warrants that are theorems-in-
action in the IJ process as the line of thought. This approach has a weakness, in that
the order of gestures and speech is not necessarily the order of thought. However,
observing these actions is our only possible observation to understand how the stu-
dents’ schemes evolve in the process. I then chart the adopted possibilities of infer-
ence (Vergnaud, 1997, 1998), since a proposition about one concept is inferred into
a proposition about another in support of either claim 1 or 2.

A) Inference chain warranting claim 1

s As WV3: When the variable changes, it increases in value.
WP2: The shared position between points is a ‘starting point’”.
(And could be that WP4: A set of points is limited by the values we pick for
the variable?)

¢ No, so WV5: The variable can increase infinitely but is limited by the ‘starting
point’,

s WP5: An ordered pair with a variable corresponds to a set of points in the co-
ordinate plane and is limited by the ‘starting point”.

B) Inference chain warranting claim 1

As WV6: The variable can increase infinitely and decrease to the limit.
And WP2: The shared position between points is a ‘starting point’ defined by
the common constant in the ordered pairs.

¢ It must be that WP5: An ordered pair with a variable corresponds to a set of
points in the coordinate plane and is limited by the ‘starting point’.

C) Inference chain warranting claim 2

* But WP6: An ordered pair with a variable corresponds to a set of points in
the co-ordinate plane, which can include the ‘starting point’.

¢ So, WV7: The variable can increase infinitely and decrease to zero beyond
the limit.

D) Inference chain warranting claim 1

e But WP2: The shared position between points is a ‘starting point’ corre-
sponding to the constant in the ordered pair.
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+ And WP5: An ordered pair with a variable corresponds to a set of points in
the co-ordinate plane and is limited by the ‘starting point’.
o 50, WV6: The variable can increase infinitely and decrease to the limit.

E) Inference chain warranting claim 2

* As WVS: The variable can infinitely increase and decrease.
e So, WP7: An ordered pair with a variable corresponds to an infinite set of
points on a trajectory in the co-ordinate plane.

The students’ IJ process starts with the false theorem-in-action WV3, creat-
ing two issues that the students must resolve to reach claim 2: the direction of
the movement and the limits/starting point. These two issues are two sides of the
same coin. If we consider WV3 and WP2, the inference could be along the lines
of ‘because the variable (only) increases in value, the variable must have a start-
ing point’. As there is little other information provided by the task, the shared
position of the points in (1, 1) (the intersection of the trajectories of points A and
B) is interpreted as this starting point. It is also possible that the inference moves
from identifying (1, 1) as the starting point to inferring the direction of the move-
ment as only positive.

In both cases, how can we understand these false theorems-in-action? They may
relate to which properties of the variable are relevant in this situation. The students
will have encountered situations in which the variable is a placeholder for a value (e.g.
in the context of formulas). In such situations, one must select relevant numeric infor-
mation from a context to replace the variable, which is a rule-of-action. By mobilis-
ing such a rule-of-action, Rio attempts to select numeric information from the ordered
pairs of points A and B, which are constants of one in this case. From that perspective,
the theorems-in-action WV3+5 and WP2+ 44 5 combine the properties of the vari-
able as a placeholder and the properties of the variable as a general number. Such a
warrant has not been inferred in the IJ analysis and is speculative.

In inference chain B, WV6 indicates a turning point. Rio recalls that the variable
can increase and decrease, which is inconsistent with inference chain A. It seems
that Rio struggles to accommodate his scheme through inference C-E, moving back
and forth between justifying claim 1 and claim 2. In inference chain C, he infers
properties from WV6 to properties of the points in WP6, but still refers to WP2 and
WPS. In inference chain E, Rio realises the full extent of the variable as a general-
ised number in WV8, rejects any limits on the variable and reinterprets the constants
in the ordered co-ordinates of points A and B.

Discussion

I first address the first research question by discussing the interplay between tool
use and the justification process. I then address the second question via a discus-
sion of the applied framework. Then, I consider the prediction task as the prediction
of dynamic behaviour and, finally, I comment on the limitations of the study. The
notion that instrumental genesis is goal-oriented is a core assumption of the IAME.
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The findings show how the goal of justification results in a particular process of
instrumental genesis. By extending the IAME with an analytical tool for IJ, with the
goal of changing the epistemic value of claims (Duval, 2007) from the perspective
of the students (Duval, 2007; Stylianides & Stylianides, 2022), we can see how the
instrumental genesis unfolds through the production and interpretation of data. The
change in epistemic value occurs through an interplay of producing data and inter-
pretation through inference between the operational invariants. The inference allows
the production of additional supportive or contradictory data. This cycle continues
until the epistemic value is changed.

As argued by Shvarts et al. (2021) and many others, the educational value of
using tools relies on the epistemic processes that allow for students’ conceptual
development. The conceptual element of IJ is considered through the warrants
inferred and the analysis of operational invariants. Through such analysis, the case
provides an example of the epistemic use of tools as the students’ progress in the
complexity of techniques used to produce data and in their conceptual understanding
of the interpretation of data. In addition, the analysis of operational invariants shows
that progression in conception emerges through inferential possibilities. What drives
the development of instrumental genesis from one artefact to the next?

We know from Vergnaud (1997, 1998) that rules-of-action concern the appro-
priateness of actions for a task and can be efficient or inefficient. In this case, this is
evident in the first progression, from placing points to tracing the trajectory of the
points. However, inefficiency is relative to the students. The plotting of points can,
for other students, be considered efficient. Moreover, the progression from tracing
to drawing is not connected to a change in the rules-of-action. Rather, it is the arte-
fact and technique that is inefficient. This drives Rio to try a different technique that
more efficiently produces data and is coherent with the rule-of-aciion. From this, we
can argue that the inefficiency of both rules-of-aciion and the constraints of an arte-
fact can drive the development of instrumental genesis.

What is particular to an IJ process of predictions is that inefficiency is related
to the production of data to represent or contradict a prediction and the goal of
changing the qualifier. Changes in technique, for example, from discrete to con-
tinuous dynamic movements, and artefact produce new types of data. The fact that
inefficient rules-of-action and techniques advance instrumental genesis and the IJ
process supports the idea of a scheme/technique duality, as proposed by Drijvers
et al. (2013). In addition to compliance with TAME, this also shows that the con-
straints and possibilities of the artefacts influence the process of instrumental gen-
esis and, consequently, IT.

The IJ analysis tool makes a significant contribution to our understanding of the
epistemic use of artefacts, representing a step forward in comprehending students’
justification processes. Notably, it brings into focus the students’ utilisation of tools
with an orientation toward the production of data. Furthermore, the model under-
scores the importance of discerning how students interpret the generated data. In
essence, the tool emphasises the student’s perspective on instrtument use by infer-
ring warrants. These warrants play a pivotal role in interpreting data in alignment
with a claim. This nuanced approach enables us to deliberate on the co-evolution of
students’ tool use, considering both the evolution of techniques and the evolution
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of justifications. In doing so, the IJ analysis tool provides a valuable framework for
delving into the intricate dynamics of students’ interactions with tools in justifica-
tion processes.

The IJ tool links student’s reasoning competency to the use of artefacts. In the
concrete case, we see that students broaden their radius-of-action by engaging in IJ
processes, which also reflects the technical dimension of students’ competency, as
they progress in terms of the complexity of techniques. The analysis of scheme ele-
ments shows that such a progression goes hand-in-hand with the conceptual devel-
opment that emerges from the inferences drawn between operational invariants. This
analytical step enables us to contemplate how the evolution of concepts is intricately
linked to the exercise of reasoning competency. In this way, the additional analysis
of scheme elements is a valuable tool for illuminating the nuanced interplay between
students’ reasoning competency and conceptual development when using tools.

For the students, the prediction task has a familiar theoretical component of ordered
pairs and points in the co-ordinate system, with which they have several years of pro-
cedural experience. It also has a less familiar component, because the students have no
experience with operationalising variables in this context. This balance between the
familiar and vnfamiliar allows students to use the co-ordinate system to identify patterns
in symbolic terms, as this can be from a procedural conception. In the introduction, it
is hypothesised that predicting the dynamic behaviour of objects in a DGAE will allow
students to reason about algebraic properties based on their mathematical and conceptual
knowledge, while capitalising on virtual objects’ realness via their dynamic properties.
In this case, the students (or at least Rio) recognise the constant as the invariant pattern
of perpendicular movement and the variable as the infinite movement of the points.

As Noss et al. (2012) maintain, such an inference would not be possible in a
paper-and-pencil environment, as both the constant and the variable would be rep-
resented statically. Predicting movement, rather than asking for a translation of the
variable points, allows students to capitalise on the dynamic behaviour and provides
a context in which they can develop their theories-in-action about terms, and move
on to the following task about variable points.

Nevertheless, one concern is issues of the translation of representation, such as
the one-to-one mapping of terms, which Duval (2006) problematised in relation to
dynamic environment. In this case, how do the students perceive A and B in the final
prediction? Do students perceive A and B as particular points that move, or have
they objectified A and B as structural patterned movement or, possibly, a hybrid of
the particular and generalised? Such questions could be addressed by observing the
students’ progression in the prediction of other variable points.

Another issue we witnessed in the case was how phenomenological impressions
{Baccaglini-Frank, 2019) can be a stumbling block to students’ reasoning processes.
This relates to the issue of a starting point. The students’ experience of the physical
world is that things that move begin moving while constrained by time and space.
Consequently, the students misinterpreted the starting point from the common con-
stant in symbolic terms in the variable point. However, through inference, the stu-
dents overcome this misinterpretation, reaching an interpretation of the data and a
prediction based on mathematically true theorems-in-action. This advances the
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hypothesis that prediction tasks can address students’ tendencies toward phenomeno-
logical justification.

Some limitations of the results should be clarified. As the results are only based on
one case, they are suggestive regarding the progression the students portray. Analysis
across a wider set of cases will allow researchers to reveal the relationships between
progression in tool use, issues that arises concerning the prediction of dynamic behav-
iour and student conceptual development in justification processes. Similarly, consid-
ering students’ instrumental genesis during similar prediction tasks could reveal how
invariant behaviour affects the prediction of dynamic behaviour of variable points.

Conclusion

This study offers an analytical tool that can increase our understanding of stu-
dents’ use of tools, in interplay with their reasoning competency, from a student-
centred perspective within the IAME. Via instrumented justification, we can con-
sider tool use as a particular use in justification processes, and as structuring such
processes because of the production of data through techniques and the inter-
pretation of data, as evidence, through warrants. In addition, an analysis of war-
rants as the generative and epistemic components of schemes (Vergnaud, 1998)
provides insights into the progression of students’ conceptual understanding as a
result of inferences drawn between theorems-in-action about concepis-in-action,
which co-evolve with the progression of techniques. In addition, the progression
of instrumental genesis is driven by students’ experience of the inefficiency of
both rules-of-action and the constraints of the artefact pertaining to the goal of
changing the epistemic status of a claim.

Inefficiency drives students to progress to other techniques and artefacts, ulti-
mately advancing their instrumental genesis. This result aligns with the scheme/
technique duality, which is a component of instrumental genesis as proposed
by Drijvers et al. (2013). Such a result can inspire task design that intentionally
provides students with ineffective tools, with a view toward progression to more
advanced tools and the conceptual development that comes with this. Altogether,
the proposed framework links students’ progression in the radius of action in their
reasoning competency and the use of tools to inferences drawn between theorems-
in-action. Furthermore, the prediction task provides context for students engaged
inll

The prediction task is particularly valuable, as the prediction of dynamic behav-
iour reveals properties of the variable, as a concept, in this case infinity. In addi-
tion, the students must interpret both constant and variant terms, explicating their
structural properties in the very simple representational form of points moving in
a co-ordinate system. Such tasks may be useful in developing a structural concep-
tion of the variable. Within a more general perspective, the prediction of dynamic
behaviour that requires the translation of representations can challenge students’
phenomenological impressions of dynamic behaviour and help them move toward a
theoretically grounded justification.
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Appendix
Appendix 1: Warrants

Appearing order of warrants
In ITJ sub-process 1la:
WP1: Orderedpairsofmumberscorrespondto the x-co-ordinateand y-co-ordinate
of a point in the co-ordinate plane
WV1: A variable should take a random value
WV2: A variable represents the same value wherever it appears within the same
problem
WV3: When the variable changes, it increases in value

In IJ sub-process 1b:

WV1, 2, 3: reappearing

WP2: The shared position between points is a ‘starting point’

WV4: The variable should take on an interval of values

WP3: An ordered pair with a variable corresponds to a set of points in the co-
ordinate plane

(Lev) WP4: A set of points is limited by the values we pick for the variable

(Rio, then both) WVS: The variable can increase infinitely but is limited by the
‘starting point’

WP5: An ordered pair with a variable corresponds to a set of points in the coordi-
nate plane and is limited by the ‘starting point’

In IJ sub-process 2:

WV6: The variable can increase infinitely and decrease to the limit

WP2’: The shared position between points is a ‘starting point’ defined by the
common constant in the ordered pairs

WPS: reappearing

WP6: An ordered pair with a variable corresponds to a set of points in the coordinate
plane, which can include the ‘starting point’

WV7: The variable can increase infinitely and decrease to zero beyond the limit
WP2’, WP5, WV 6: reappearing

WV8: The variable can infinitely increase and decrease

WP7: An ordered pair with a variable corresponds to an infinite set of points on a
trajectory in the co-ordinate plane

WPS: A constant in an ordered pair corresponds to the constant distance to the
corresponding axis of a trajectory

Rules-in-action mobilised into a technique:

WV1 and WP1: Plotting points for randomly picked values of the variable
WV4 and WP3: Tracing or drawing trajectories of points
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On the notion of "background and
foreground” in networking of theories

CEecILIE CARLSEN BacH, MATHILDE K1£R PEDERSEN, RIKKE

MaagaarRD GREGERSEN AND UFrFE THOMAS JANKVIST

Inthis paper, we report on a finding in an ongoing literature review on Networking of
theories. Astheories arethe focus of networking practices, discussion of what is meant
by theory is an ongoing debate. In our reading of these discussions, we experience a
discrepancy inthe use ofthe notion of background theories and foreground theories,
which can be related to an abselute or a relative understanding of these notions. We
accountforthisdiscrepancy and discuss potential consequences of each perspective
to arguethat a new notion “framing theories” or a distinction between "background
theory inside mathematics education” and "background theory outside mathematics
education” may accommodate these consequences.

The term "networking of theories™ stems from the thematic working group
(TWG@G) on theoretical perspectives and approaches in mathematics education
research (MER) at the Congress of European Research in Mathematics Edu-
cation (Kidron et al., 2018). The group confronts the issue of the diversity of
theories inmathematics education, and claims that "theoretical approaches can
only become fruitful if connections between them are actively established”
(Bikner-Ahsbahs etal , 2014, p. 8). Taking this stance, the group has embarked
on the challenge of how to establish connections between theories by develop-
ing "networking of theories” as aresearch practice. Several important questions
and issues have been discussed over the vears. Kidron and colleagues (2018)
state the following examples: "What are the aims of connecting theories? [...]
Towhatextent does the networking depend on the theories that are considered?”
(p.257), "To what extent do we share the same notion of theory? (p. 257), "What
are the different aims of networking?” (p. 258); "What do researchers do when
they use more than one theory? Do the different approaches use the same words
with different meanings?” (p. 258). Such questions have been addressed in the
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literature on networking of theories, e.g. Bikner-Ahsbahs and Prediger (2000)
the ZDM article "Diversity of theories in mathematics education — How can we
deal withit?”, the ZDM issue "Comparing, combining, coordinating —network-
ing strategies for connecting theoretical approaches™ edited by Prediger et al.
{(2008), and not least in the recent book "Networking of theories as a research
practice in mathematics education™ edited by Bikner-Ahsbahs and Prediger
{(2014). Surely, the potential answers must to some extent draw on a common
notion of "what theory 1s” — we return to this below. For now, we draw the atten-
tion to the observation that in the available literature on networking of theories,
there are often references to the notion of background theories and foreground
theories (to be explained in more depth below) — this often occurs with specific
reference to Mason and Waywood (1996), who initially introduced the terms
into MER. Our ongoing review, which so far encompasses 96 publications on
networking of theories, reveals the observation that the use of these two terms
inmore recent literature donotnecessarily align with the original description by
Mason and Waywood. More precisely, although some theoretical perspectives
are attributed the role of background theories; these are not necessarily used in
the sense of Mason and Waywood. Hence, there 1s a discrepancy between the
descriptions and the actual use. In this paper, we ask the question: How are the
notions background theories and foreground theories used in the literature on
networking of theories?

We do not provide a full account of the 96 publications due to the space
limitations of this paper. Instead, we present and discuss our finding through
two carefully selected illustrative cases, showing the discrepancy in the use of
background theory. Before we get to these cases, we briefly discuss the notion
oftheory itself and explicate the original notion of background and foreground
theories as defined by Mason and Waywood (1996).

What 1s "theory” in mathematics education research?

Innetworking oftheories, aminimum requirement must be that we can agree on
whatisand whatisnot a theory. The literature — not only in mathematics educa-
tion — is rich on various attempts of coining what theory is. For the reader who
1s unfamiliar with this discussion, we provide a brief account in this section.
The reason we do this is not to apply this in our further analyses, but rather
as a general comment to the ongoing discussion on what a theory actually is,
and not least what a theory must be described by in order to be networked with
other theories. We shall consider a theory from the perspective of networking
theories, not least, with reference to what has taken place in this literature.
Kidron et al. (2018) state that the questions of what a theory is and how
theoretical frameworks shape MER “came into play when comparing or just
talking about theories is the heterogeneity of what is considered as a theoretical
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framework in MER and the consequent possible incommensurability of the
investigations that are carried out in different theories™ (p. 261). Radford (2008,
p.320) suggested that a theory is a way of producing understanding and ways
of action based on a triplet PMQ:

Asystem, P, of basic principles, which includes implicit views and explicit
statements that delineate the frontier of what will be the universe of
discourse and the adopted research perspective.

A methodology, M, which includes techniques of data collection and
data-interpretation as supported by P.

A set, Q, of paradigmatic research questions (templates or schemas that
generate specific questions as new interpretations arise or as the principles
are deepened, expanded or modified).

Around the same time, Prediger et al. (2008) surveyed different notions of
theory found in the literature. This led them to distinguish between static and
dynamic notions of theory, eventually pleading for a dynamic understanding:
“theories or theoretical approaches are constructions in the state of flux” and
they “consist of a core, of empirical components, and its application area. The
core includes basic foundations, assumptions and norms, which are taken for
granted” (p. 169). Niss (2019), however, notes: “The fact that theories or theo-
retical approaches are in a state flux doesn’t mean that the definitions of the
concepts are aswell”. We agree with Niss (2019) that: “Anything called a theory
(or theoretical framework, construct etc.) is a theory of something! 1.e. it deals
with certain sorts of objects and phenomena, as well as terms for these™ Mason
and Waywood (1996) define such objects asthe “sorts of things that are studied,
even if they are not perceived as "things’ in any material way” (p. 1058). From
Radford’s (2008) account, it 1s unclear where these objects reside, although
several researchers in networking of theories seem to consider them as part of
the principles (P).

Foreground and background theories

As mentioned in the introduction, Mason and Waywood’s (1996) distinction
between foreground and background theories is often referred to in the dis-
cussion of the concept of theory. In this section, we outline our interpreta-
tion of the distinction as a basis for further discussion. Mason and Waywood
(1996} present theory as a “hypothesis, or possibility such as a concept that
1s not yet verified but that if true would explain certain facts or phenomena”
(p. 1055). They define foreground theory as explicit hypothesising based on
the process of asking and answering questions within mathematics education,
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because 7[...] the foreground aim of most mathematics education research is to
locate, precise and refine theories 7 mathematics education about what does and
can happen within and without educational institutions™ (Mason & Waywood,
1996, p. 1056).

Thus, from the process of questioning “things” within a local or specific area
of mathematics education research gives rise to new thearies in forms of explicit
hypotheses about what is happening, or what can happen under certain circum-
stances. The foreground theories are generated within mathematics education
and can have one or more of four different functions: descriptive; explanatory;
predictive and informing practice. Conversely to foreground theory, Mason and
Wayvwood define background thecry as implicithypothesising oras a belief that
guides behaviour. They consider that “every act of teaching and of research can
be seen as based on atheory of or abour mathematics education” with reference
to Thom (1976), who puts it as “all mathematical pedagogy, even if scarcely
coherent, rest on a philosophy of mathematics” (quoted in Mason & Waywood,
1996, p. 1056). In this sense, the theory remains in the background and implies
an implicit way of action or behaviour of the teacher or researcher, but is not
used withan explicitaim. It is important to notice that a background theory does
not become a foreground theory, just because the hypothesis becomes explicit.
Mason and Waywood (1996) emphasise that as a researcher, it is important to
be aware and explicit about one’s own background theories and their implicit
assumptions and hypotheses. They explain:

Background theories encompass an object (aims and goals of the research,
including what constitutes aresearchable question [...]), chjects (what sorts
of things are studied, [...]), methods (how research is carried out, validated
and applied), and situation (as perceived by the researcher), and provide a
language for discussing these. The situation necessarily assumes, mani-
fests, encompasses, and is constituted through a philosophic stance mani-
fested in the discourse and in other practices. (p. 1058)

This implies that the activities of research, such as framing researchable ques-
tions, using an appropriate method, collecting data, using analytical tools and
looking at results as well as the validation hereof, are all determined and con-
structed by the background theory. This is elaborated with examples of how
theoretical positions such as post-modernism, phenomenology and different
directions within constructivism stress different ways and methods to investi-
gate sociological and psychological dimensions and phenomena in educational
research. Hence, we understand backgroundtheory as the theory that affords the
conditions for the structure of the research, but it isnotatheory generated within
mathematics education research (MER). In addition, MER draws on theories
from domains such as psychology and sociology, and their philosophical posi-
tions as well as their methods (Mason & Waywood, 1996). Accordingly, we
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understand Mason and Waywood’s (1996) explanation of background theories
as theories establishing the view by which we look at mathematics education,
for example critical theory, constructivism, social-constructivism, phenomeno-
logy or ethnology. It also follows that we understand their term of foreground
theory as the theoretical constructs generated and developed by research in
mathematics education that have explicit aims in forms of describing, explain-
ing, predicting and/or informing specific situations, concepts and practices
happening or possible to happen in the teaching and learning of mathematics.

Asan example of the differences between foreground and background theo-
ries, we use Vergnaud’s (2009) Theory of concepiual fields (TCF). As TCF is
a theory developed in MER, specifically concerned with mathematical learn-
ing, it is a foreground theory. To consider the background theories of TCF, we
must understand what theories precede TCF. As Vergnaud (2009) argues for
his perception of schemes, he draws on Vygotsky’s (1962) as well as Piaget’s
(1977) understanding of schemes. These two constructivist perspectives both
have a broader scope on learning as they are developed outside of MER. Hence,
we position them as the background theories of TCF.

A hermeneutic literature review

The following is a brief overview of our initial literature review on network-
ing of theories. This review was conducted as a hermeneutic literature review.
Due to very limited results in databases, a systematic literature review was
not possible to conduct (Boell & Cecez-Kecmanovic, 2014). As a part of a her-
meneutic process, the understanding of the literature is never final; a constant
re-interpretation is taking place. We began by scanning CERME proceedings,
relevant ZDM issues and books and reference lists for the relevant literature to
expand our literature base. Furthermore, we did literature searches in MathE-
duc and ERIC, although this did not reveal many relevant sources. Only litera-
ture describing the practice of networking of theories in mathematics education
were included in the final cohort. We described each relevant piece of literature
in the following categories made our findings about background theories more
explicit: 1) actual results; 2) how is networking of theories used and discussed; 3)
what theories are being networked; 4) what strategies and methods are applied;
and 5) perspectives with particular relevance to our overall project.

In our efforts to grasp the discussions of category 2, we compared the use of
the notion of foreground and background theories in the literature on network-
ing of theoriesto the original reference by Mason and Waywood (1996). Our two
cases are carefully chosen to illustrate the result of this comparison: Each case
utilises background theory explicitly, yet differently. But first, a further elabo-
ration on the different uses of background theory in networking of theories.
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Foreground and background theories in networking of theories

In relevant literature, the use of Mason and Waywood (1996) is widespread,
both in paragraphs concerning theory and in discussions thereof. At CERMES,
a communication problem within the field of MER was noticed: "Researchers
from different theoretical frameworks sometimes have difficulties to under-
stand each other in depth because of their different backgrounds, languages
and implicit assumptions™ (Arzarello et al., 2007, p. 1618).

This quotation emphasises the need to understand the origin and background
of theories as well as their implicit assumptions and hypotheses. According
to Bikner-Ahsbahs and Prediger (2006), the distinction between background
and foreground theories seems applicable when analysing theories and their
functions in different phases of research. This could be the characterisation
of foreground theories and their respective background theories. An example
is: "The theory of interest-dense situations is a foreground theory with a
middle range scope (Mason and Waywood, 1996), situated in the background
theoretical framework of interpretative research on teaching and learning”
(Bikner-Ahsbahs & Halverscheid, 2014, p. 99).

According to Bikner-Ahsbahs and colleges (2014), the underlying theoreti-
cal assumptions must be explicit when networking theories. Bikner-Ahsbahs
and Prediger (2006) point out that “the background theory and its philosophi-
cal base are deeply interwoven” (p. 33). For instance, when taking a construc-
tivist perspective, mathematics has a philosophical view on the construction
of knowledge. Nevertheless, the use of foreground and background theories is
regarded neither as a definite definition of theories, nor as an absolute catego-
risation of theories. This leads to a more relative use of background and fore-
ground theories, than originally intended by Mason and Waywood (1996), e.g.:
"In contrast [to the absolute definition], the status of some parts of the theory can
change from foreground to background theory or vice versa within the research
process” (Bikner-Ahsbahs & Prediger, 2006, p. 54). We interpret this statement
to meanthata theory isnot only offabout MER or only in MER, but that atheory
can act as either, depending on the situation. Bikner-Ahsbahs and colleges
{2014) contribute to this meaning by referring to foreground and background
theories as relative distinctions. Still, and despite the discussions of making
background theories explicit, authors reporting on networking processes and
results seldom explicate the distinction. Hence, the way these terms are used
within research practices are less apparent that one might initially anticipate.

Examples on the different use of background theory

Our first case 1s an example of the relativism of the notions as presented in
Bikner-Ahsbahs and Prediger (2006). Koichu (2013) describes the work of
a colleague in which a selected framework is contrasted with another. The
insights obtained in the contrasting process are used in a following process of
unpacking a selected construct in the selected framework:
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To this end and consistently with the Bikner-Ahsbahs and Prediger’s
(2006) terminology, the former theory can be seen as a foreground one,
and the latter —as a background one. On the other hand, they use the Hersh-
kowitz et al.’s (2001) work as a background theory or as an overarching
framework, in which their own foreground theory is embedded.

{Koichu, 2013, p.2841)

The relativism of the status of a given framework thus becomes apparent as
something that emerges in particular situations in research activities expressing
the relation between frameworks in use.

Our second case 15 an example of another use of the notion of background
theory. First, Fetzer (2013) addresses a specific perspective, namely Latour’s
Actor network theory (ANT) as a background theory to understand objects in
mathematics education: “Latour’s approach is fascinating and irritating and
provokes the research question, if and respectively how actor network theory
can be a fruitful background theory to get a better understanding about the
role objects play in mathematical learning processes” (Fetzer, 2013, p. 2800,
italics in original).

Using Latour’s ANT, Fetzer (2013) presents an example in line with Mason
and Waywood’s (1996) distinction between foreground and background theo-
ries. Latour’s ANT, as a theory outside of mathematics education research,
is used as a background theory determining the researchers’ definition of an
object, the researchable objects, methods and situations. Similar utilisations are
found in Bikner-Ahsbahs and Prediger (2014) and Bikner-Ahsbahs and Halver-
scheid (2014). This way of using the notion of background theory implies that
it is a perspective outside of MER, which allows the researcher to understand
mathematics education through a particular philosophical or epistemological
stance.

To sum up, our literature review on networking of theories indicates that
the original terms, as defined by Mason and Waywood (1996), have under-
gone further development. The use of the notion of background and foreground
theories in the networking of theories literature now also encompasses a more
relative definition of background theory, i.e. one focusing on the relations of
theories within MER.

Coexistence of two notions of background theory

Inthe discussion of theories related to networking of theories, Bikner-Ahsbahs
and Prediger (2014) suggest to take “the notions of foreground and background
theory as offering relative distinctions rather than an absolute classification,
they can help to distinguish different views on theories (p. 6). This quotation
clearly describes the development of the definitions of foreground and back-
ground theories. Hence, in line with the findings of cur literature review, and as
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showcased by the two illustrative cases above (Fetzer, 2013, and Koichu, 2013),
the relative and the absolute distinction of the foreground and background theo-
ries coexist in literature on networking of theories. Schoenfeld (2007) empha-
sizes aneed for specificity of concepts inresearch, as loosely defined terms can
produce variation in results. Looking at the absolute distinction of background
theory, this satisfies Schoenteld’s criteria for specificity. However, what are the
potential consequences of an absolute distinction of background and foreground
theory? One consequenceis that it causes a large number of foreground theories,
because all theoretical developments and contributions generated inside MER
are considered as such. Another consequence of the absolute distinction is an
untended need for a notion that denotes the experienced distinctions between
theories inside MER. Using Koichu (2013) as an example of Bikner-Ahsbah and
colleges” (2014) relative use of the notions, theory in mathematics education
has a similar role as a background theory. Hence, the use of foreground theory
as a background theory seems to confuse the use of background theory, since
background theories inside mathematics education and background theories
outside mathematics education then coexist.

Moving to the relative distinction of background and foreground theories,
also this might not withstand Schoenfeld’s (2007) criteria for specificity. A first
consequence of a relative distinction is a less clear definition of foreground and
background theories. A second consequence 1sthe existence of different utiliza-
tions of the notion of background theory. When different utilizations of back-
ground theory exist, a third consequence occurs: The importance of the back-
ground theories outside MER and its philosophical base might be indistinct. If
researchers do not take their background theories outside MER into account,
the implicit assumptions and hypotheses continue to be tacit.

Conclusion

Our study shows that both a relative and an absclute distinet of foreground and
background theories exist in the literature of networking of theories. Koichu's
{2013} uses the relative distinction when denoting the relation between theo-
ries or frameworks in use. Fetzer (2013) uses the absolute distinction when she
considers the underlying beliefs or epistemological position that determ ines the
researches” goals, aim, questions and objects. Considering both the absolute and
the relative distinctions, the following consequences appear:

— Adhere to the absolute distinction: a need for a new notion distinguishing
background theories emerges when networking.

— Adhere to the relative distinction: different utilizations of background
theories appear.
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The consequences of both reveal the need for distinguishing between fore-
ground theories, background theories inside MER and background theories
outside MER. In networking of theories, the relative distinction also builds
on the changing relationship between the theories used in a research practice
(Bikner-Ahsbahs & Prediger, 2006). This means that one theory may act as
both foreground and background inside MER.

Lookingatthe consequences of anabsolute anda relative distinction between
foreground and background theories, these indicate the need for a new distinc-
tion/notion. We suggest that the background theories inside mathematics edu-
cation research are referred to as framing theories. Looking at Koichu (2013),
the new distinction informs and describes the different roles of foreground and
background theories in networking. If the notion framing theories is applied,
the importance of background theories outside MER arises and the implicit
assumptions and hy potheses in background theories outside MER thusbecomes
clearer. The new notion is not needed to characterise Fetzer’s (2013) network-
ing practice and the distinction between foreground and background. However,
given the use of background theory outside MER and foreground theory inside
MER, the theories involved do not change between the two types in a net-
working practice. This means that the dynamic relationship between theories
only exist between framing theories and foreground theories inside MER.
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APPENDIX

List of appendices:
A: Tteration 2 task sequences
B: Iteration 3 task sequence

C: Abbreviations
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A: Iteration 2 task sequences

The fully online task sequence implemented in class A

https://www.geogebra.org/m/pbrvygss (In Danish)

Word document with tasks sequence + online GeoGebra apps English

Frist and introductory problem set

= & = &
+ ENY s @ Point =Y 5 =
4+ @ A=(053-113)
+

Read and do:
Points are constructed by defining their x and y coordinate. Points are always named with a capital letter.

Try it yourself, enter the following: A = (1,2)

Turn on "show trace" by right-clicking on point A.

Investigate how you can change the coordinates by dragging the point.

Also change point A by entering different values for its x and y coordinates in the algebra view.

Change the coordinates by writing mathematical expressions instead of numbers on the x- and y-coordinates. Challenging yourself

to see how complicated a math expression you can come up with?

=~ & (k]== ~ &
A e A
Point =N 5 @ Line & Delete Y & @
_ 1 4 3 77 ® fiy=2 : +
® A= (5 (—2),7$73)
_ N Point
= (1,243 FRmE
e A=(12) Bl c
+ 2
T
B-122)
1
C={3
RESEINREE] ERETaET) | TREEE JunaE INaaE JRuRL) 5 1 r— T b
+
s
2
. )
1
=

Create three points that lie on a straight line parallel to the x-axis.
Argue why your points lie on a line that is parallel to the x-axis.
Answer guide:
You must argue that something is parallel. Therefore, you must consider what is needed for something to be parallel, write what you

find as the first thing in your argument.
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» Write something about your points and the line they lie on
» Write something about the x-axis
» Write why this means they are parallel

d) Bonus GeoGebra challenge: Can you construct the line on which the points lie by typing in the algebra window?

Q4

a) Discuss what you can predict about the following points without writing them into GeoGebra.

R= (3,4), U= (3;1,6) and T=(3,-2)

b) Formulate a hypothesis

Answer guide:

A good hypothesis is a claim that something must be true that is not written right before us. The claim that "the x-coordinate of point
U is 3" is not a good hypothesis, because it is stated in the assignment. What can you say about the points that you have not already
been told?

A hypothesis can start with

We claim that...

It must apply to...

Points R, U and T must...

¢) Argue why your hypothesis must be correct.

Answer guide:

What is the mathematical content of your hypothesis that must apply for the hypothesis to be true? Start by writing it.
Then write what you know about the points.

Are there other elements from your hypothesis that you should write about?

Write why this means that the hypothesis is true

Q5

a) Test your hypothesis by entering the coordinate sets for points R, U and T into GeoGebra.

b) Is your hypothesis correct?

If yes, how do you know if your hypothesis is correct?

If no, what did you get wrong in the argument and what did you learn?

Second problem set with one dimensional variable points

k] + 7 @ Q = k7 e Q

+ @& 4 -
i = |

®

Initial state Q2

Read:
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Points can have a variable in the coordinate set as these two points:

A =(1,s) and B = (s,1) where s is a variable.

Q2

Show and explain how you think points A and B move in the coordinate system when s changes value?
(to do so, you can use the tools in the toolbar, and you can also right-click and use the tools there)

Q3

Justify your hypothesis - why do A and B move as you claim?

Answer guide:

In question 2 you have shown how you think A and B move.
You must argue why the points move exactly like that.

» Write what you know about the coordinates of the points

» Write why this means that they must move exactly as you say

K]~ =1 @ S
o [ :

5

>
|

5 — 5 (5)
A= (1) 3

@

= (1,5) 3

scocem wm o wmeo

® B =(s1) H 2

= (51)

B
wemmen o ® o oEmee W 0o 000w w0 ® O

+

&
S
&
.

i

°
~

Q4+5a-c 2

Q4

Construct the points A = (1,s) and B = (s,1). It is important that you write s in the coordinate sets.
Q5

a) Change the value of s by dragging the slider.

b) Turn on "show trace" for the points (right click on the points)

¢) Change the value of s again by dragging the slider.

d) Explain to the camera how the points move

e) Also explain why they move like that

Q6

a) Formulate a hypothesis about a relationship between the variable s and point A

Answer guide:

When a hypothesis is to be about a relationship, it must describe how something affects something else. In this case, it is what happens
to A when s changes. Feel free to use GeoGebra.

You can, for example, start your hypothesis with:

Whenss...

Ifs...

It must apply to A that.... when s....

b) Argue why your hypothesis is true
Answer guide:
What is the mathematical content of your hypothesis that must apply for the hypothesis to be true? Start by writing it.

Then write what you know about the points.

Maybe you should write something about variables?
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Or something about the coordinate system?

Write why the things you have mentioned mean that the hypothesis is true.

Q7
c¢)  When does A = B?
d) What arguments can you come up with to justify when A = B?
Answer guide:
For the answer you must see how many different arguments you can come up with, which justify that your answer in 7a) is correct.
Consider:
. What do you know about the points?
. What do you know about the variable s?
*  What can you see?

. Why are the points not the same elsewhere?

k]~ =1 @ S

s -15 H @
el 5 ® R JEREL
=5 A : s s

= (1,s) H
® , o
- R Jodd
. [ |
® B = (s1) i 2 | '
= (-15,1) B H $
o s s wmmm smomie 00 Qom queme wme ® s

C=(29) :$ 8

= (2,-15) SHH 2 IO i i 3 4 5 5 7
¥ . .
+ | & !A !c
S 25
[ I ]
i s .
Q8a i
3HS
s 8
T | |
{ jmgmt ;
¢ .

Q8
a) Construct a new point C depending on s, which moves parallel to A. (so, s must be in the coordinate set of the new point)

b) Can C = A, if so, when? Can C = B, if so, when?

¢) Justify your answer

Answer guide:

You must argue why the points are equal or not. Therefore, you must consider what it takes for them to be equal. Write what you find
out as the first point in your argument.

» Write something about point B

» Write something about Point C

» Write why this means that your answer must be correct

If you find that C cannot be equal to B, try to see if you can change C so that they can. Maybe that can support your argument?
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Problem set with two dimensional variable points.

(k] 2 @

(k] 7 @

Y

D = (s,s) and s is a variable.

Show in the coordinate system how point D moves when s changes value (You can use the tools in the toolbar and you can also right-

click)

Justify your hypothesis - why does point D move as you claim?
Answer guide:

In question 1 you have shown how you think D moves.

You must argue why D moves exactly like that.

» Write what you know about D

Write why this means that D moves exactly as you say

Number )
s

s=-38 : Cd

5 -9 5 ® o .

Point ...e’
H

D = (55 S 4
® ) ; -

= (38,-38) o

+ 1

Type D = (s,s) into the GeoGebra app

Change the value of s by dragging the slider

Does the point move as you expected?

Describe here how the point moves

Justify why D moves exactly like that
Answer guide:

Consider your answer for question 2. Can you still use the argument after you have seen the point move in GeoGebra?

« If yes, copy it down here. Is there anything that needs to be added or changed?

« If no, formulate a new argument.
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Number () Number <

s=23 i .'~ s=id3 H \ | D'f P/
® . o |

5 — 5 () - 5 —-0 .

Point 45 Paint
~

D= (s9) o D = (s5)

. = (23,23) by = (43,43)
-~
.

® 1= (-s,5) * i 1=(-s3) K

= (23,23 . = (43.43) .

SoEaEgnaisessummmmscmsy  SESsEeSwssmmsEssSusiesmesmescs mSmmes TmmEs Smmanomnen RER_SEEEmsmEsmimEmxzmEmeumEs:
+ P=(s+Ls) H DR
ciEicis, ° s
..f \. = (53.43) el e -~
" 2 s + ..". _."' 2 \..
s ~ ohe .
. 2 . . . d i .
Q4a 'I \‘ L4 L4 -
2 48 = Q5a e - 8
o .
22 ol =] P M Y ‘o

Q4

a) Construct a new point I that depends on s and that moves from the 2nd quadrant to the 4th quadrant. (So, you must construct a new
point that has s in its coordinate set)

b) Why is your solution correct?

Answer guide:

Your argument must contain the following points:

« What is needed for a point to move from the 2nd quadrant to the 4th quadrant
« What is the coordinate set for I ?

» Why does it mean that you are moving from the 2nd quadrant to the 4th quadrant

Q5

a) Construct a point P dependent on s that never crosses D’s path.

b) What arguments can you find that justify that your point never crosses D’s path?
Answer guide:

Your argument must consider the following points:

«  What does it take for P to never cross D’s path?

. What is the coordinate set for P?

*  Why does this mean that P never crosses D’s path?

298



Word document with tasks sequence + online GeoGebra apps Danish

(k] =&

2 Y 5 &

O byder at du skal svare i GeoGebra
Opgave 1:

Sp1)

Lees og udfor:

Punkter konstrueres ved at definere deres x- og y-koordinat. Punkter benavnes altid med et stort

bogstav.

O Prov selv, indtast folgende: A = (1,2)

Sp2) O

S1& "vis spor" til, ved at hgjre klikke pa punkt A.
Undersgg hvordan I kan s&ndre koordinaterne ved at traekke i punktet.

/ZEndr ogsa pa punkt A ved at skrive andre vaerdier for dens x- og y-koordinaterne i algebravinduet.
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Zndr koordinaterne ved at skrive regneudtryk (regnestykker) i stedet for tal pad x- og y-

koordinaterne. Udfordrer jer selv, hvor kompliceret et regneudtryk kan I finde pa?

Sp3)

GOpret tre punkter som ligger pa en ret linje parallel med x-aksen.

Argumenter for, at jeres punkter ligger pa en linje der er parallel med x-aksen.

Jeres svar: Svar guide:
I skal argumentere for at noget er parallelt. Derfor
skal I overveje, hvad skal der til for at noget er
parallelt, skriv hvad I finder ud af som det
forste i jeres argument.

e Skriv noget om jeres punkter og den linje

den danner
e Skriv noget om x- aksen

e Skriv hvorfor det betyder at de er parallelle

Argumenter for at jeres punkter ligger pa en horisontal linje.

Svar: Svar guide.

I skal argumentere for at noget er horisontalt.
Derfor skal I overveje, hvad skal der til for at noget
er horisontalt i et koordinatsystem. skriv hvad I
finder ud af som det forste I jeres argument.
Skriv noget om jeres punkter og den linje den

danner

Skriv hvorfor det betyder at den er horisontal

d) O Bonus GeoGebra udfordring: Kan I konstruere den linje som punkterne ligger pa ved at

skrive i algebra vinduet?
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Sp4)

Diskuter hvad I kan forudsige om folgende punkter uden af skrive dem ind i GeoGebra.

R=(3,4) , U= (3;1,6) og T=(3,-2)

Skriv en hypotese her under

Jeres svar:

Svar guide:

En god hypotese er en pastand om at noget ma
vaere sandt, som ikke star skrevet lige foran os.
Pastanden at “x-koordinaten i punkt U er 3” er
ikke en god hypotese, for det star jo i opgaven.
Hvad kan I sige om punkterne, som I ikke allerede

har fiet at vide?

En hypotese kan starte med
Vi pastar at...

Det ma gelde at...
Punkterne R, U og T ma...

Argumenter for at jeres hypotese ma veere rigtig.

Jeres svar:

Svar guide:

Hvad er det matematiske i jeres hypotese, som skal
galde for at hypotesen mé veare sand? Start med
skrive det.

Skriv sa hvad I ved om punkterne
Er der andre elementer fra jeres hypotese I skal
skrive om?

Skriv hvorfor det betyder at hypotesen er sand

Sp5)

@ Test jeres hypotese ved at skrive koordinatsattene for punkt R, U og T ind i GeoGebra.
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b) Er jeres hypotese rigtig?
Hvis ja, g til spergsmal c)
Hvis nej, ga til spergsmal d)
Opgave 2:
Sp 1) Lees:
Punkter kan have en variabel i koordinatsattet som disse to punkter

A =(1,s) og B = (s,1) hvor s er en variabel.

@ Vis I koordinatsystemet, hvordan I tror punkt A og B bevager sig, nar s &endrer veerdi?
Forklar det ogsa til jeres webcam

(I kan fx bruge veerktgjerne i veerktgjslinjen og I kan ogsa hgjre-klikke og bruge de varktgjer der er
der)

Begrund jeres hypotese - hvorfor bevaeger A og B sig som I pastar?

Jeres svar: Svar guide:

I spargsmal 2 har I vist hvordan I taenker A og B
beveger sig.

I skal argumentere for hvorfor punkterne beveeger

sig lige precis sadan.

e  Skriv hvad I ved om punkternes koordinater
e Skriv hvorfor det betyder, at de ma bevage

sig netop som I siger

Sp 4)G

a) Ga til det neeste GeoGebra ark i opgave 2 .
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b) Konstruer punkterne A = (1,s) og B = (s,1). Det er vigtigt at I skriver s i koordinatsattene.

Sp5) O

ndre pa veerdien af s, ved at traekke i skyderen.

S1a "vis spor" til for punkterne ( hgjre klik pa punkterne)

ZEndre igen pa veerdien af s, ved at trackke i skyderen.

Forklar til kameraet hvordan punkterne bevager sig

Forklar ogsa hvorfor de bevaeger sig sadan

Sp 6)

Opstil en hypotese om en sammenhang mellem variablen s og punkt A

Jeres svar:

Svar guide:

Nar en hypotese skal handle om en sammenheng,
s& skal den beskrive hvordan noget pavirker noget
andet. I denne opgave er det hvad der sker med A
nar s endre sig. Brug gerne GeoGebra

I kan fx starte jeres hypotese med:

Nars...
Hviss ...

Det ma geelde for A at.... nars....

Argumenter for at jeres hypotese er sand

Jeres svar:

Svar guide:

Hvad er det matematiske i jeres hypotese, som skal
gaelde for at hypotesen ma vare sand? Start med
skrive det.

Skriv sa hvad I ved om punkterne

Maske I skal skrive noget om variable?
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Eller noget om koordinatsystemet?

Skriv hvorfor de ting I har nesevnt betyder at

hypotesen er sand.

Sp7)

Hvornar er A = B?

Jeres svar: Svar guide:
Undersgg hvornar de to punkter er det samme.

Skriv kort hvornér A og B er ens.

Hvilke argumenter kan I finde for at begrunde hvornér A = B? Noter de argumenter I finder frem
til.

Svar: Svar guide:

Her skal I se hvor mange forskellige argumenter I
kan finde frem til, som begrunder at jeres svari 7a)
er korrekt.

Overvej:

Hvad ved I om punkterne

Hvad ved I om den variable s

Hvad kan I se

Hvorfor er punkterne ikke ens andre steder?

Brug jeres viden til at forme argumenter.
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O Konstruer et nyt punkt C afthengig af s, som bevager sig parallelt med A. ( s skal altsa
indga i koordinatsettet i det nye punkt)
Kan C = A, hvis ja, hvornar? Kan C = B, hvis ja hvornéar?

Jeres Svar:
C=A:
C=B:

Argumenter for jeres svar

Jeres svar:
C=A:
C=B

Svar guide:
I skal argumenter for punkternes lighed eller
mangel pa samme. Derfor skal I overveje, hvad der
skal til for at noget er lig med hinanden. Skriv
hvad I finder ud af som det forste i jeres
argument.

e Skriv noget om punkt B

e Skriv noget om Punkt C

e Skriv hvorfor det betyder at jeres svar ma

vaere korrekt

Hvis I finder at C ikke kan vare lig med B, forseg
om I kan @&ndre pa C, s de kan. Maske det kan

understotte jeres argument?
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Opgave 3:

O Find opgave 3 i gruppen.

Sp1) @

D = (s,s) og s er en variabel.

Vis I koordinatsystem hvordan punkt D bevager sig, néar s eendre vaerdi? (I kan bruge veerktgjerne i

verktgjslinjen og I kan ogsa hgjreklikke)

Begrund jeres hypotese - hvorfor bevager punkt D sig som I pastar?

Jeres svar: Svar guide:
I spergsmal 1 har I vist hvordan I tenker D bevaeger
sig.
I skal argumentere for hvorfor D bevager sig lige
preacis sadan.

e Skrivhvad Ived om D
Skriv hvorfor det betyder, at de ma bevage sig

netop som I siger

OSkI‘iV D = (s,s) ind i GeoGebra arket ( det nederste ark)

@fEndr pa veerdien af s, ved at treekke i skyderen

Opforer punktet sig som I regnede med?

Svar:

Beskriv her hvordan punktet beveeger sig:
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Svar:

e) Argumenter for hvorfor D beveger sig netop sadan

Svar: Svar guide:
Se pa jeres svar til spegrgsmal 2. Kan I forsat bruge
argumentet efter I har set punktet I GeoGebra?

e Hyvis ja sa kopier det her ned. Er der noget

der skal tilfgjes eller eendres?

e Hvis nej, sa formuler et nyt argument.

@ Konstruer et nyt punkt I athaengig af s, som bevager sig fra 2. kvadrant til 4. kvadrant. (
I skal altsa konstruer et nyt punkt som har s i sit koordinatsaet)

Hvorfor er jeres lgsning korrekt?

Svar: Svar guide:
Jeres argument skal indeholde folgende punkter:
e Hvad skal der til for at et punkt bevaeger sig
fra 2. kvadrant til 4.kvadrant

e Hvad er koordinatsattet for | ?

e Hvorfor betyder det at | beveeger sig fra 2.
kvadrant til 4.kvadrant

O Konstruer et punkt P afhengig af s som aldrig krydser D’s bane.

Hvilke argumenter kan I finde der begrunder at jeres punkt aldrig krydser D’s bane?
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Svar:

Svar guide:

Jeres argument skal indeholde folgende punkter:

e Hvad skal der til for at P aldrig krydser D’s

bane

e Hvad er koordinatsattet for P ?

e Hvorfor betyder det at P aldrig krydser D’s

bane

Sp 6)

a) O Konstruer et punkt Z afhengig af s som bevager sig imellem punkt D og P

b) Hvorfor er jeres lgsning korrekt?

Svar:

Svar guide:
I har formuleret mange argumenter nu, sa her kan
I prove selv. Er I, i tvivl sé se tilbage i opgaverne,

maske I kan finde hjelp i jeres tidligere svar.

B: Iteration 3 task sequence

Frist and introductory problem set

-A//"‘Jt‘GOK;N"i‘? b = oA/Jw,B@@A’,xiin D) Q =
W : &N . &Y W N Ry @
s=0 H s=36
- 3 3 A2
® -5 @ 5 () @ 5 o 5 O
>
B = (s1) : B = (s.1) A3B
=(0,1) 1 = (3.6,1) 1 o
Cc3 C2 C1 A1
® Al = (L,9) H % % % 2 3 5 ® Al = (L,s) 4 3 2 1 0 1 2 3 4 5
= (1,0) o A2 - = (1 36) c3 o .
: C2
A2 =(25-1) H = N3 Q L A2=(25-1) ° - Q
o = (2, 26) Q
— ¢ : oc{a o
A= (3s-2 o A3=(35-2) .

Open this link to a GeoGebra sheet:

https://www.geogebra.org/classic/bps4j3bn

a) Examine by pulling the slider for s:

b)  Describe to each other what you see and notice. Try to explain what you see.
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DR R FANEIES Sc Q=
L e . @
s=-33
O 5 e 5 ® 6
- B = (s.1) H <
=(-33,1) c8C22
® Al = (Ls) 10 s 5 <1Ekb 4 6 8 10
=(1,-33) : a
8 Q
A2 = (2,5—1
© ey 3 i A3
= (2,-43) " Q
o A3=(5-2) : i B &
¢)  Turn on the trace for all the points (by right click on the point). s=0 .
Start the animation on the little arrow.
d) Describe what you are now noticing. Try to explain what you see. -5 ® @
e)  Why is it that when you change s, the points move? And why do they move differently?
f)  One can enter precise values for the variable by clicking s = . (First stop the animation) :
2)  Enter different values for s and examine the outcome. Describe and explain. 5 ® 5%
h) Notice the algebra view on the left side. Describe what information you can see there. - B
i) Each point has two lines of information. Select a point in the algebra view. Describe and explain s=0 ;
what the difference is between the two lines? Also examine what happens when you change s. O 5 ° 56
P B =(s1) :
—~(01)
@ =)
— (1,0)
® A2 = (2,5-1)
~ @
® A3 = (3,5—2)
- (3,-2)
R]A AL CO LN 2 oc Q= R]A AL CO LN 2 e Q=
AP e . =Y AP N Joo =Y
B 1 I o
1 H _ C=(-2-3s
® 2= (72‘755) . () ( 2 ) .
= (-2,-1.3)
= (-2,-13) A1 P Al
° ° 1 : °
1 H 2 .AZ G =(-3->s 2 .AZ
® G- (73'73 S) a3 © ( 3 ) Eaz
. = (-3,-0.87) .
= (3.-087) iy %4 c32 o 2 4 5 a . i S 2 4 5 |
. C2 1 H .
® P=(35s) o a ® P:(1.25+§) s a
= (3,26) K a = (1, 5.53) < Q
+  Input 4 g -
j)  Create a point, P = (3,s).
e  Change P by changing 3 to other values. It can be all kinds of numbers, both natural numbers, decimals, fractions, with
exponents - whatever you can come up with. Try several different ones. Remember that in GeoGebra decimals are written
with periods and not comma, e.g. 1.2.
e  Change P by adding arithmetic operations to s. So, +, -, *, /. e.g., P=(3, 0.55)
e  Try combining several operations (e.g., multiplication and minus) e.g., P = (3, 2s-1)
k)  Examine, describe, and explain the significance of subtracting/adding to s:

Write your answer here:

D

Write your answer here:

Examine, describe, and explain the impact of multiplying or dividing s by a number.

m) What happens when you combine several types of operations?

Write your answer here:
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Second problem set with one dimensional variable points

DRZEERE N EFINE oc q = [+ 0o)4) N =]+ oc Q=
oA =N ° = P - I =N ° BTN
* @  strokel : 4‘
+
2 2
6 4 2 0 2 4 [} 6 - 2 o 2 4 6
“ f
Q 5 o

Q1 A
a) Open anew GGB ° / -
b)  For this question you can use ,add , lines and the
Guess how A1= (1,s) behaves in the coordinate system when changing the value of s. K Fiyt
¢)  Also show where the track starts and ends.
d)  Explain your guess. Vl Frihandsform
e)  Now construct the point using the algebra view: A1= (1,s) and examine what happens when you change the
value of s. f Penveerktgj
f)  Does it match what you thought? Completely, partially, or not at all?" Explain why

When done: If you have drawn, added points or the like, delete all that so that only point A1 remains.

A&~ > 004N = S G E
e N . e
s=-06 :
o 5 e @ 5 (5) )
‘
AL = (1,5)
© = (1,-0.6) 2
@ A=(1-6)
T NI 57 T
@  strokel 5 o
+ < Q
o b2 Q
. o
Q2
m) For this question you can use ,add and the

Guess and show how A2 = (1,5 - 1) behaves in the coordinate system when changing the value of s.
n) Also show where the track will start and end.
o) Explain your guess.

p)  Explain to each other how A2 is different from point A1.

q) Now construct point: A2 = (1,s-1) and examine what happens when you change the value of s.
r)  Does it match what you thought? Completely, partially or not at all?" Explain why.
When done: If you have drawn, added points or the like, delete all that so that only points A1 and A2 remain.
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) A olo) 4N = + S Q= KA AD OO LN =@ ) =
me e \ % W2 : = \ B
o |2 i s=-27 H™
5 e 5 (3) ¢ LI e O) B
AL = (1,5) : 4 AL = (1,5) : 4
» = (1-41) 2 * = (1,-27) )
————— e QB
8= (1‘5 B 1) -10 -8 -6 -4 -2 [ 2 4 6 8 10 O A= (1'5 - 1) -10 -8 -6 -4 -2 [ 2 4 6 10
- = (1,-5.1) . 7 = (1,-37) . =
@  strokel 7 a ol 5 5 :2;
1 % s ——95 0 =
b ) Q . Q
-6 B = (v,1) H Q3C -6
Q3a . 12 © = 1) .
Q3
a)  For this question you can use ,add and the .
Guess how B = (v,1) behaves in the coordinate system when changing the value of v.
i) Explain your guess.
j)  Explain to each other how is B different from points A1 and A2? Does B have any similarities with A1 or A2?
k)  Now construct point B= (v,1) and examine what happens when you change the value of v.
1) Does it match what you thought? Completely, partially or not at all? Explain why.
m) Whatis the value of v and s when:
a. ? v= s=
b. ? v= s=
n) Willit also apply if B = (s,1)? Explain why/why not.
o) Change the point B = (v,1) to B = (s,1)
p)  Does it match what you thought? Completely, partially or not at all? Explain why.
q) Can ? Please mark your answer and explain why/why not.
a.  Yeswhen:
b. No.
r)  Can ? Please mark your answer and explain why/why not.
a.  Yeswhen:
b. No.
D% = FANEIES oc Q = &AL elo)e)N] =]+ 5 =
N N ° @ We e ° E0N
s=-09 : s=1 $
© 5 m—— 5 () ! ® 5 —— 5 (D) ¢
Al = (1,5) : Al = (1,5) 5
(@) 2
= (1,-0.9) 52 O = (L.1) B2
o °
B =(s1) = (s, i
@ - (s 6 i N 0 5 2 i 5 ® i (1‘(1)1) +- T + - -
A2 " *
A2=(2s-1) 2 i A2 = (1,25-1) H 2
® = (2.-19) Q3| Q o = (1,1) S
+ ‘ - - Q3m y =
s)  Ifyou change A2 ‘s x-coordinate. Is it then possible for ?
a. Yes when:
Explain why your solution applies.
b. No. Explain why.
t)  Change A2 back to A2 = (1,5 - 1).
1) Now, if you change A2’s y- coordinate, can without ?
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a.  Yeswhen:
Explain why your solution applies.
b.  No. Explain why not.

DRl =) FARNEIE oe Q =
2| &)%) 3 =N ¢ @
s=2 -
© % o & G . A3
A2
® Al = (1,5) H
A1
= (12 2 *
3
B = (s1)
O =(2.51) -6 -4 -2 0 2 4 6
'S
® A2 = (1,25-1) 5
= (13) &
A3 = (1,35-2) H & -
@
= (1, 4)
Q4

a)  Show and explain: How can you see in the coordinate system that two points:
e  areequal to each other in one point.
e always equal each other
e are never equal to each other.

b)  Construct a new point A3 dependent on s with the following properties (you must construct a new point that has s in its coordinate
set):
e  wherex=1
e which never equals A1 and A2
. in a point
¢)  Check that your solution meets all three requirements.
d)  Explain why your solution applies.
e)  Canyou formulate a rule for when any point on x=1 will be equal B when s = 1?

Answer:

Q5

This task is a thought experiment.

a) Intheory, how long can the tracks of a point be? Is there any limitation? Explain why/why not.

b) Now if we imagine that there is such a track on the line x=1. Which of these points are on that track? (Mark which points)
(1,5)  (3,8) (1,45-100) (2,4s+100) (1,1/25) (s3,1) (s/s,4) (s/s,s:s) (s/s,s%)

¢)  Formulate a rule for which points are on the track? Explain why your rule applies.

Answer:

DREENEERANEE oc Q=
I = 1 Hiace : 2
B = (s.1) i i
= (0.1) !
A2 = (1,2s—-1) $ )
© = (1-1) B
N A1
° A3 = (1,35-2) H % g7 5 3 R T :
=(1-2) o o "
A3
C=(2s-1) : N R Q
= (2-1) Q
4
+
Q6
a)  Construct a new point C depending on s that moves parallel to A1 and A2.
b) Can ? If so, when? If not, is it possible to change C so ?

c)  Explain why
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Second problem set with two dimensional variable points

VRSB SIS IPAN IR

o Yadi e QR0 K %5 BRI fo] () PANRIEI 3

c)  Explain your guess.

Q =
m— N ? »HE® : N @
@  strokel s=13 H
@  stroke2 ® O
, ® D = (s,5)
+ | = (13.13)
i
~ ~
Q
Q1lab 2 Q1d Q
=
Q1
Open a new GGB
a)  For this question you can use ,add and the

Guess how D = (s,s) behaves in the coordinate system when changing the value of s.
b)  Also show where the track starts and ends.

d)  Now construct the point: D= (s,s) and examine what happens when you change the value of s.
e)  Does it match what you thought? Completely, partially or not at all? Explain why

DI o= IPANEIES

S5c Q=
BN

e : e

o s =295 :
5 —— 5
D = (s,5)
= (295, 2.95)

® | = (-s,s) .
= (-2.95, 2.95)

n
Q1if

g) Can

®  Yeswhen:

f)  Construct a new point I dependent on s, which moves from the 2nd quadrant to the 4th quadrant. Why is your solution correct?
, if so, when? Please mark your answer and explain it.

® No.

DR I =PANEE

_ ;
Bl O = %25
W= : N =y
s= : =1
o 255 § o °
5 ——— 5 O
D = (s,5) D = (s;s)
= (2555, 2.55) o =(L1)
I = (=s.5) | | = (=s,5)
i = (-2.55, 2.55) ¥ [ e = (11
R (B
P = (s5+1) P=(s—2s5)
= (255, 3.55) Q2a N ® = (L1
i +
i

| J(6]I[%) EARNES R
=N
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Construct a point P depending on s which never intersects D’s trajectory.
Explain why your point P does not intersect D.
Can ? If so, when? Please tick your answers. Explain why/why not to each other.

a. Yeswhen:
b. No

If you now change the coordinates of P, is it possible that ? If so, when
Explain why your solution

Q3

Open the same file from earlier in GeoGebra. https://www.geogebra.org/classic/bps4j3bn

Examine it again, is there anything new you notice or something you can better explain now?
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https://www.geogebra.org/classic/bps4j3bn

C: Abbreviations

RC — Reasoning Competency

IAME - Instrumental approach to mathematics education

IA — The instrumental approach, also known as the theory of instrumental genesis
IJ — Instrumented justification

DR — Design based research

DGE — Dynamic Geometry environments

DGAE — Dynamic geometry and algebra environments

CAS — Computer algebra system

KOM - The KOM-framework: Competencies and Mathematical Learning
NT — Networking of theories

ATD - Anthropological theory of didactics
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