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SUMMARY 

In recent decades, among others, two areas of focus have emerged in mathematics education research. 

The first emphasizes mastering mathematics as competencies, proficiency, or literacy, as opposed to 

merely knowing mathematical facts and skills (Niss, 2016). The second area explores the use of digital 

technologies in teaching and learning mathematics (Artigue & Trouche, 2021). 

The Danish competency framework, known as the KOM-framework, outlines eight mathematical 

competencies that describe activities related to doing and dealing with mathematics (Niss & Højgaard, 

2019). Among the eight competencies, mathematical reasoning competency, which involves analyzing 

or producing arguments to justify mathematical claims, is the focus of this project (Niss & Højgaard, 

2019). The KOM-framework, along with the use of digital tools, is featured in the Danish mathematics 

curricula across primary, lower secondary, and upper secondary education (Danmarks 

Evalueringsinstitut [EVA] 2009). In addition, digital mathematics tools, such as dynamic geometry 

environments and computer algebra systems, increasingly integrate functionalities from both 

geometry and algebra (Freiman, 2014; Sutherland & Rojano, 2014), offering new possibilities and 

complexities that often surpass the understanding of laypersons. This study reported in this 

dissertation has both practical and theoretical aims. Practically, it investigates how the integration of 

digital tools in geometry and algebra can support students’ reasoning processes in lower secondary 

mathematics education and emphasizes enabling students to exercise their mathematical reasoning 

competency rather than developing the competency as such. Theoretically, the study seeks to promote 

sustainable theoretical development by linking the KOM-framework with international mathematics 

education research. This is achieved by adopting a networking perspective (Prediger, Bikner-Ahsbahs, 

et al., 2008) on theory development. 

Design research (Bakker, 2018; Cobb et al., 2003; Gravemeijer & Prediger, 2019; McKenney & Reeves, 

2014). as the methodological framework for this project, guiding the collection and analysis of data, as 

well as the establishment of learning situations that incorporate mathematical reasoning competency, 

digital technologies, and the variable as a generalized number. A microworlds (Hoyles, 1993) of 

variable points along with task sequences were developed, aiming for students to exercise 

mathematical reasoning competency by investigating basic algebraic expressions and their structural 

implications in the dynamic behavior of variable points. 

In addition to the KOM-framework, the project employs other theoretical perspectives, such as the 

instrumental approach to mathematics education (IAME) (Guin & Trouche, 1998) and the elaborated 

notion of a scheme (Vergnaud, 1998b) in relation to the scheme-technique duality (Drijvers et al., 

2013), and Toulmin’s (2003) argumentation model. These perspectives are used for analyzing, 
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describing, and explaining empirical data, particularly regarding students’ use of digital tools and their 

mathematical reasoning competency. 

The dissertation comprises six research papers and an accompanying kappa that provides the 

theoretical background, methodology, additional analysis, and results. Paper 1 is a literature review 

that identifies potential tools within GeoGebra, a dynamic geometry and algebra environment, for 

student justifications of the variable as a generalized number, which informed the task design. Papers 

2 through 5 analyze empirical data from students working with different tasks and the development of 

an analytical tool for instrumented justification. Paper 2 introduces the initial connection between the 

KOM and IAME frameworks, interpreted through Toulmin’s model, leading to the creation of an 

analytical tool. Paper 3 refines this tool, defines instrumented justification, and describes students’ 

justification processes using artifacts. Paper 4 focuses on the goal of student tool use within a task that 

is further developed, examining its potential and challenges for exercising reasoning competency. 

Paper 5 emphasizes the scheme aspect of the analytical tool, analyzing Vergnaud’s (1998) scheme 

components and elaborating on how students’ conceptual knowledge integrates into their 

instrumented justification processes. Paper 6 addresses the notion of foreground and background 

theory within the networking of theories perspective. 

The dissertation contributes three design principles for task design that support students’ exercise of 

reasoning competency, a microworld for exploring and justifying the dynamic behavior of variable 

points, and associated tasks. It also elaborates on reasoning competency in students’ instrumented 

justification processes and the scheme-technique duality and provides suggestions for supporting 

these processes in the classroom and through task design. Additionally, it identifies a hybrid 

conception between continuous and discrete understandings of variables in predicting variable 

behavior within the dynamic geometry and algebra environment and suggests theoretical links 

between the KOM and IAME frameworks as potentials for further theoretical networking. 
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RESUMÉ 

I de seneste årtier er to fokusområder løbende blevet diskuteret inden for forskningen i 

matematikdidaktik. Det første fokusområde italesætter at mestre og lære matematik som besiddelse 

og udvikling af matematisk kompetence i stedet for viden og læring af matematiske fakta og 

færdigheder (Niss, 2016). Det andet område udforsker brugen af digitale teknologier i undervisning og 

læring af matematik (Artigue & Trouche, 2021). Den danske KOM-rapport skitserer otte matematiske 

kompetencer, der beskriver aktiviteter relateret til at udøve og håndtere matematik (Niss & Højgaard, 

2019). Blandt de otte kompetencer er matematisk ræsonnementskompetence, som er 

omdrejningspunkt for dette studie. Ræsonnementskompetence indebærer at analysere eller producere 

argumenter for at begrunde matematiske påstande (Niss & Højgaard, 2019). Kompetencerne, sammen 

med brugen af digitale værktøjer, er en del af de danske matematiklæreplaner på både grundskole- og 

gymnasieniveau (Danmarks Evalueringsinstitut [EVA], 2009). 

Moderne digitale matematikværktøjer, såsom dynamiske geometri programmer og computer algebra 

systemer (CAS), integrerer i stigende grad funktionalitet fra hinanden (Freiman, 2014; Sutherland & 

Rojano, 2014), hvilket giver nye muligheder men også øger programmernes kompleksitet. Dette studie, 

rapporteret i denne afhandling, har både praktiske og teoretiske formål. Praktisk undersøges, hvordan 

integrationen af geometri og algebra i digitale matematikværktøjer kan støtte elevers 

ræsonnementsprocesser i udskolingens matematikundervisning. Studiet lægger vægt på at gøre det 

muligt for eleverne at udøve deres matematiske ræsonnementskompetence snarere end som sådan at 

udvikle elevernes kompetence. Teoretisk søger studiet at fremme bæredygtig teoretisk udvikling ved 

at forbinde KOM med international matematikdidaktiskforskning. Dette opnås ved at anvende et 

netværksperspektiv (Prediger, Bikner-Ahsbahs et al., 2008) på teoriudvikling. 

Projektets metodiske udgangspunkt er designbaseret forskning (Bakker, 2018; Cobb et al., 2003; 

Gravemeijer & Prediger, 2019; McKenney & Reeves, 2014). Det har guidet indsamling og analyse af 

data samt design af opgaver, der fordrer elevers udøvelse af matematiske ræsonnementskompetence i 

brugen af digitale teknologier med fokus på variable som et generaliseret tal. I den henseende er der 

udviklet og designet en ”microworld” (Hoyles, 1993) med variable punkter med tilhørende 

opgavesekvenser. Den er udviklet med henblik på at lade eleverne udøve matematiske 

ræsonnementskompetencer gennem deres undersøgelse af grundlæggende algebraiske udtryk og 

strukturelle implikationer i de variable punkters dynamiske egenskaber. 

Udover KOM anvender projektet andre teoretiske perspektiver, såsom den instrumentelle tilgang til 

matematikundervisning (IAME) (Guin & Trouche, 1998) og dens opfattelse af kognitive skemaer 

(Vergnaud, 1998b) i relation til skema-teknik-dualiteten (Drijvers et al., 2013), samt Toulmins (2003) 
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argumentationsmodel. Disse perspektiver bruges til at analysere, beskrive og forklare empiriske data, 

særligt i forhold til elevernes brug af digitale værktøjer og deres matematiske 

ræsonnementskompetence. 

Afhandlingen består af seks forskningsartikler og denne tilhørende rapport, der beskriver den 

teoretiske baggrund, metodologi samt bidrager med yderligere analyser og resultater. Paper 1 er et 

litteraturstudie, der identificerer potentielle værktøjer i GeoGebra, et dynamisk geometri- og 

algebraprogram, til elevers ræsonnementer af variablen som et generaliseret tal. Paper 1 har informeret 

studiets efterfølgende designprocesser og produkter. Papers 2 til 5 analyserer empiriske data fra elever, 

der arbejder med forskellige opgaver, og udviklingen af et analytisk værktøj til instrumented 

justification. Artikel 2 introducerer den indledende teoretiske udvikling i at forbinde KOM og IAME, 

som genfortolkes gennem Toulmins model, hvilket fører til udviklingen af et analytisk værktøj. Artikel 

3 forfiner dette værktøj, instrumented justification, og beskriver elevers ræsonnementsprocesser ved 

brug af digitale værktøjer. Artikel 4 fokuserer på elevers mål i brugen af digitale værktøjer i deres 

undersøgelser og løsning af en opgave. Opgaven videreudvikles på baggrund heraf, og opgavens 

potentiale og udfordringer for udøvelse af ræsonnementskompetence undersøges. Artikel 5 fokuserer 

på kognitive skemaer i det analytiske værktøj i analyser af Vergnauds (1998) skema-bestanddele og 

uddyber, hvordan elevers konceptuelle viden integreres i deres instrumenterede 

ræsonnementsprocesser. Artikel 6 behandler begrebet forgrunds- og baggrundsteori i et 

netværksperspektiv på teoriudvikling. 

Afhandlingen bidrager med tre designprincipper for opgavedesign, der understøtter elevers udøvelse 

af ræsonnementskompetence, en ”microworld” til at udforske og begrunde variable punkters 

dynamiske bevægelse og tilhørende opgaver. Den uddyber også ræsonnementskompetence i elevers 

instrumenterede ræsonnementsprocesser og skema-teknik-dualiteten og giver forslag til at 

understøtte disse processer i klasseværelset gennem opgavedesigns. Derudover identificerer den en 

hybridopfattelse mellem kontinuerlige og diskrete forståelser af variable i forudsigelsen af variable 

punkters bevægelsesmønstre i dynamiske geometri- og algebraprogrammer og foreslår teoretiske 

forbindelser mellem KOM og IAME som potentialer for yderligere teoretisk udvikling. 
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1 INTRODUCTION 

Digital mathematics tools have become an integrated and widespread part of mathematics 

education, originating a new paradigm for mathematics education (Mullis et al., 2016; Trouche et 

al., 2013). Dynamic geometry environments (DGE) are predominant in mathematics education in 

primary and lower secondary education (Mullis et al., 2016), whereas computer algebra systems 

(CAS) are the main tool in upper secondary education in Denmark (Grønbæk et al., 2017; Trouche, 

2005). However, the digital mathematics tools of today increasingly draw on functionalities from 

one another, relating the two domains of geometry and algebra. This development renders both new 

possibilities and increased complexity beyond the comprehension of laymen. 

Alongside the increase of digital tools, the KOM framework (in short, KOM) was introduced in 

Denmark with the Competencies and Mathematical Learning report from 2002 (Niss & Højgaard, 

2011; Niss & Jensen, 2002). It compelled a shift in mathematics education in Denmark from 

understanding mathematics and mathematics education to be a matter of skill and knowledge to one 

of mathematical competence and mathematical competencies1 (Niss & Jankvist, 2022). Among the 

eight competencies, we have only just started to understand how digital tools influence and interplay 

with students’ development of competencies.  

The present PhD project studies lower secondary students’ mathematical reasoning competency 

(RC) (Niss & Højgaard, 2019) in situations involving mathematical digital technologies that merge 

CAS functionality into a DGE – resulting in a dynamic geometry and algebra environment (DGAE). 

The impact of digital technologies on mathematical development and reasoning has been a 

significant topic in mathematics education research (Artigue, 2010; Trouche et al., 2013). Niss 

(2016) argues that digital tools can either enhance or replace mathematical competencies, depending 

on their use. This emphasizes the educational value of tool use for educational prospects residing 

within explorational and interpretational use of tools (Artigue, 2002), which is fundamental to 

reasoning processes (Misfeldt & Jankvist, 2019). The practical aim of this study is to address how 

DGAEs can play such a role in students’ RC in lower secondary mathematics education.  

 

 

 

1 KOM differentiates between competence and competency. While mathematical competence involves using 
mathematics to tackle various challenges, mathematical competency focuses on addressing specific types of 
challenges requiring particular mathematical skills. Thus, mathematical competence is built from a set of 
mathematical competencies.  
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The KOM framework has been developed within a national context, so in order to explore both RC 

and digital tools, it is necessary to relate the framework to international mathematics education 

research (MER). MER encompasses a diversity of concepts, frameworks, and theories that have 

originated and evolved within a diverse research community (Prediger, Bikner-Ahsbahs, et al., 

2008) and may not necessarily incorporate a competency perspective. Therefore, extending the 

boundaries of a framework developed at a national level to incorporate theories from the internal 

research community requires careful consideration to maintain the original identity of the KOM 

framework.  

The research practice of networking theories (Prediger, Bikner-Ahsbahs, et al., 2008) offers both 

perspectives on reflective practices for connecting theoretical approaches as well as strategies to 

integrate theoretical approaches. Linking RC with other theoretical approaches resembles what Niss 

and Jankvist (2022) describe as mutual fertilization and can suggest potentials of such integration. 

With this in mind, the overarching goal of the study is to promote sustainable theoretical 

development that links the KOM framework with theories in MER, by addressing the practical aim 

of investigating the potential of DGAEs for students to exercise their RC.  

1.1 MATHEMATICAL COMPETENCIES IN MER AND CURRICULA 
Already in 1973, McClelland advocated for assessing education with regard to competence instead of 

intelligence. Since then, the concept of competence has gained significant traction, particularly in 

curricula and educational research. Numerous competency frameworks have emerged, such as the 

21st century skills  (Berthelsen, 2017; Partnership for 21st Century Skills 2002), The general term 

competency can be akin to “ability, capability, cognizance, effectuality, efficacy, efficiency, 

knowledge, mastery, proficiency, skill, and talent” (Kilpatrick, 2014, p. 85).  The Danish response to 

the competency paradigm originated with the KOM project, resulting in the KOM report in 2002 

(Niss & Jensen, 2002) (Jensen is now Højgaard). This report has been translated to English by Niss 

and Højgaard (2011) and revisited in Niss and Højgaard (2019). 

In all, the KOM framework describes eight distinct, yet mutually related, mathematical 

competencies; the one of relevance in this study is the RC (Niss & Højgaard, 2011, 2019). The 

framework has had significant influence on the education system in Denmark but has also 

“generated extensive discussion and a multitude of additional conceptual developments, oftentimes 

in connection with different theoretical, empirical and practical uses of the notions, as reflected in 

many publications” (Niss & Højgaard, 2019, p. 2). Højsted (2021), Thomsen (2022), Bach (2022) 

and (Pedersen, 2024) are all examples of this, and international collaborations have resulted in the 

book Mathematical Competencies in the Digital Era (Jankvist & Geraniou, 2022). Moreover, the 

research project “The Didactics of 21st Century Mathematics Teaching and Learning or 
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Mathematical Competencies and ICT”, in which this PhD project is rooted, aims to connect theories 

from MER to the KOM framework to better understand the interplay of digital tools and students’ 

mathematical competencies.  

1.1.1 Reasoning competency  

RC has undergone significant development from the original framework (Niss & Højgaard, 2011; 

Niss & Jensen, 2002) to Niss and Højgaard (2019), as the emphasis has changed from proof to 

justification. This is both evident in the definition and description. Originally, the authors wrote that 

RC is:  

on the one hand, the ability to follow and assess mathematic reasoning, i.e. a chain 

of argument put forward by others, in writing or orally, in support of a claim. It is 

especially about knowing and understanding what a mathematical proof is and how 

this differs from other forms of mathematical reasoning. (Niss & Højgaard, 2011, p. 

60) 

The revised version of RC, however, is defined as “to analyze or produce arguments (i.e., chains of 

statements linked by inferences) put forward in oral or written form to justify mathematical claims” 

(Niss & Højgaard, 2019, p. 16). Additionally, the early description mentioned proof on four separate 

occasions, and only hints to other reasoning forms as “informal arguments”. In the revised 

description, proof appears once and justification four times, and it is stressed that “the kinds of 

claims at issue in this competency are not confined to “theorems” or “formulae” but comprise all 

sorts of conclusions obtained by mathematical methods and inferences, including solutions to 

problems” (Niss & Højgaard, 2019, p. 16). 

Reasoning as proof only receives little attention in the lower secondary education (Ministry of 

Children and Education, 2019), whereas justification is applicable to other and more occurrent 

processes in mathematics teaching and learning at this educational stage, such as problem-solving 

processes.  The prior emphasis on proof in RC is also reflected in the research on RC at lower 

secondary education and the use of technology, for example Højsted (2021) and Thomsen (2022), 

who both regard aspects of proof. The shift in emphasis with respect to RCs has implication for lower 

secondary education. Otherwise, this study emphasizes justification processes, aligning with the 

revised description of RC, and hence contributes with new aspects to our understating of students’ 

use of tools in relation to the competency.  

1.2 THE USE OF TOOLS IN EDUCATION AND MER 
MER on digital tools in mathematics education has developed from the ideas and ideals of Papert 

(1980), which materialized in the turtle programming software LOGO, to the study of DGE, CAS 
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(Villa-Ochoa & Suárez-Téllez, 2021) and microworlds (Edwards, 1998). Throughout the last decade, 

DGE and CAS software has adopted features from each other, providing symbolic manipulation of 

geometric construction and graphs, plots, etc. (Hohenwarter & Jones, 2007). The one mathematics 

software that has taken the development to the full extent is GeoGebra, which 

provides a closer connection between the symbolic manipulation and visualisation 

capabilities of CAS and the dynamic changeability of DGE. It does this by providing 

not only the functionality of DGE (in which the user can work with points, vectors, 

segments, lines, and conic sections) but also of CAS (in that equations and 

coordinates can be entered directly and functions can be defined algebraically and 

then changed dynamically. (Hohenwarter & Jones, 2007, p. 127) 

As such, GeoGebra is a digital environment that combines the traditional features of a DGE with the 

algebraic features of a CAS tool. This is, for example, evident in the so-called algebra view, where 

symbolic representations of items in the graphic view can be constructed and manipulated. 

Furthermore, GeoGebra has been developed as an educational tool (which is common for DGEs) 

rather than an expert tool (which is often the case for CAS). In the Danish educational system 

GeoGebra is widely implemented in both primary and lower secondary school mathematics 

education (Højsted, 2020b). GeoGebra is widespread as it is free, open source (Sutherland & Rojano, 

2014), and has been translated into many languages. 

Affordances particularly associated with the integration of geometry and algebra are the dynamic 

characters of multi-representation, which can “contribute to improvement in the reasoning, 

understanding, and conceptualization of mathematical objects” (Villa-Ochoa & Suárez-Téllez, 2021, 

p. 5). Nevertheless, the potential of the algebra view for the learning and teaching of mathematics, 

and in particular students’ development of RC, is yet to be fully unveiled (e.g., Hohenwarter & Jones, 

2007).    

The use of DGE and CAS allows for the exploration and investigation of mathematical concepts 

through access to multi-representation (Drijvers et al., 2009). However, this potential is not 

automatically realized, especially when students encounter challenges in using the tools or 

understanding the mathematical content, deflecting the students’ focus from mathematical 

reflection (Guin & Trouche, 1998). In MER, there are two dominating theories concerning students’ 

use of tools: the Instrumental Approach to Mathematics Education and the Theory of Semiotic 

Mediation. The Theory of Semiotic Mediation is based on the instrumental approach and emphasizes 

the role of the teacher, while the Instrumental Approach to Mathematics Education emphasizes the 

co-development in the interactions between student and tool. The latter approach is rooted in 
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cognitive ergonomics and has two directions, one evolving within Anthropological Theory of 

Didactics and another from Vergnaud’s definition of schemes (Artigue & Trouche, 2021). 

1.4 The Danish school system 

The Danish education system mandates ten compulsory years of schooling, spanning primary 

education (0th grade‒6th grade) to lower secondary education (7th‒9th grade). Upper secondary 

education, inclusive of 10th to 12th grades, branches into academic (called gymnasium), vocational, 

and technical tracks (Ministry of Children and Education, 2018; Ministry of Children and Education 

2021). 

The national mathematical curriculum, which applies from primary school through upper secondary 

school, incorporates mathematical competencies as outlined in the KOM framework (Ministry of 

Children and Education, 2019; Ministry of Children and Education 2021) and provides general aims 

and guidance. Denmark maintains a free market for teaching materials, allowing teachers and 

schools the freedom to choose the materials they prefer to use (Danmarks Evalueringsinstitut [EVA] 

2009). This also provides ample opportunities for research and collaboration with practitioners 

without compromising curricular required plans and materials. 

1.3 PERSONAL MOTIVATION  
As a mathematics teacher, KOM has been my didactical anchor for teaching mathematics. However, 

taking a master’s degree in didactics of mathematics became an eye opener for what MER has to 

offer practitioners. I often found that much of the existing literature on reasoning adopted an expert 

perspective on students’ reasoning attempts (e.g., Duval, 2007; Harel & Sowder, 2007), evaluating 

students based on what their arguments lack, from an idealistic mathematical standpoint, rather 

than being curious about students’ reasonings and acknowledging the learners’ paths as valuable. 

The expert perspective simply did not resonate with the experiences I had as a teacher in primary 

and lower secondary school. The expert view was also present in the original version of RC, holding 

the ideal of proof and logic to be essential for the competency. However, the revised version of RC 

(Niss & Højgaard, 2019) articulated an inclusive view of reasoning and reasoning processes. I found 

that the revised version of RC presented an opportunity to approach reasoning from a student 

perspective, considering what students find evidential and how that emerges in their justification 

processes using DGAE. It has therefore been crucial for me to adopt and elaborate student 

perspectives in justification processes, and I hope to contribute to MER by giving insights on 

students reasoning as valuable in their own educational journey. 

Another implication of my master’s studies was that I became aware of the vast knowledge in the 

research field that has yet to disseminate into practice. As a way of impacting the field beyond my 
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own classroom, I became an editor of digital resources for an educational publishing house, 

responsible for a mathematics platform for digital learning resources. One of my main tasks was 

integrating GeoGebra into the platform, which required collaboration with mathematicians, 

teachers, authors, and technicians. The experiences I gained in this position have been invaluable as 

I transitioned into my PhD project. GeoGebra proved to be more than a mathematical problem-

solving tool, as it became a transformative environment for didactical design, enabling the creation 

of templates and resources that lets students explore mathematical concepts. Ultimately, for me this 

study has been an extension and a deep dive into aspects that were already at heart, designing 

mathematics educational resources well-informed by research. 

1.4 STRUCTURE OF THE DISSERTATIONS  
The dissertation is composed of six research papers and this kappa. The kappa introduces and 

explains the project, relates the results of the six papers, and provides additional results. It consists 

of eight chapters: 1) the introduction, 2) the theoretical foundation and perspectives 3) research 

questions, 4) the methodology, 5) the execution of the study, including a summary of the six papers, 

6) design results, 7) analytical results, 8) theoretical developments, 9) the discussions and 

conclusion. 

Chapters 6, 7, and 8 each contain a discussion of the results, and the final discussion in Chapter 9 

revisits the methodology and discusses quality and overarching topics and concludes the study. 

Appendix A and B contain sets of tasks used in classroom experiments, and Appendix C includes a 

list of abbreviations used in the kappa. 

Chapter 2 begins with a discussion of the concept of theory, followed by a description of networking 

of theory as a research practice aligning with the research aim. It then presents the theoretical 

framework and foundation of the project, discussing the KOM framework, reasoning in school 

mathematics, and the use of tools in mathematics education, including the instrumental approach 

to mathematics education (IAME). Chapter 3, building on the theoretical framework, introduces and 

elaborates the projects three research questions.  

Chapter 4 describes the methodology of the study, which is educational design research (DR), 

including how networking practices are intertwined in the processes and the use of theory in DR. 

Chapter 5 details how the DR methods have been executed and elaborates on the type of DR study, 

overview of the execution of the study, and provide contexts for classroom experiments, as well as 

methods for collecting data. The purpose is to clarify the working process and the associated 

decisions. Then, it provides an overview of publications related to the study, and it describes the six 

papers in relation to the study and its results. 
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Chapter 6 details the design processes and classroom experiments that led to the development of 

practical design principles, a microworld, and tasks. The experiments were conducted in three 

iterations of preparation, testing, and analysis.  

Chapter 7 analyzes and discusses the practical implications of the relationships between students’ 

tool use and RC, drawing on findings from papers, as well as additional analysis and results. Chapter 

8 describes and discusses the theoretical developments throughout the study, presenting and 

proposing practical links of RC with the KOM framework and the IAME.  

Chapter 9 discusses the methodological steps taken toward answering the research questions and 

the quality of the results. It also debates various practical aspects across the study, such as assessing 

RC in the context of tool use and how a particular tool within GeoGebra, the slider tool, can be 

beneficial for justifying algebraic structures. This leads to the conclusion of the dissertation, which 

summarizes the answers to the overall research questions. 
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2 THEORETICAL FOUNDATION AND PERSPECTIVES 

This chapter introduces the theoretical considerations and approaches of the study as a whole and 

across papers and forms the basis for formulating the research questions presented below in Chapter 

3. The chapter comprises two parts. The first part deals with fundamental questions and the 

perspective of scientific use of theory. It includes a discussion of the notion of theory and its use, and 

an overview of the networking approach. The second part elaborates on the theories applied in the 

study, as well as state of the art concerning the central aspects of the project: students’ exercise of 

RC in justification processes and the use of tool.  

2.1 PERSPECTIVES ON THE NOTION OF THEORY 
“There is no shared unique definition of theory or theoretical approach among mathematics 

education researchers” (Bikner-Ahsbahs et al., 2014, sec. 2). Hence, it is crucial to provide a clear 

and comprehensive discussion of the concept of theory before employing the theoretical frameworks 

of this study.  

Theorizing serves several purposes, and usually more than one is at play. In MER, Niss (2007) 

identifies several objectives of using theory. A theory can be used to explain phenomena, which is 

closely related to predicting phenomena, as the latter may depend on the former. Theory can be 

utilized to guide action or implementation to achieve a specific objective or to prevent scientific 

misconduct and criticism. Lastly, theory can provide a structured set of lenses to observe and 

interpret domains of the real world. Niss (2007), along with Schoenfeld (2007), signify the 

importance of this particular purpose: 

all empirical research is concerned wide and deeply grounded in (at times tacit but 

nevertheless strong) theoretical assumptions. Even the simplest observations or data 

gathering is conducted under the umbrella of either implicit or explicit theoretical 

assumptions, which shape the interpretation of the information that has been 

gathered. Failure to recognize this fact and to act appropriately on it can render 

research worthless or misleading. (p.70)  

Mason and Waywood (1996) have put notions to this issue with their distinction between foreground 

and background theory. Foreground theory is an explicit form of hypothesizing in mathematics 

education that involves asking and answering questions. In MER most of the theoretical work falls 

within this category. Developed frameworks ore construct present an explicit hypothesis about what 

occurs, or can occur, under specific circumstances and can serve various functions, including 

description, explanation, prediction, and informing practice. Background theory, on the other hand, 
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refers to implicit hypothesizing or beliefs that guide behavior. This includes the aims and goals of 

the research, the objects studied, the methods used, and the perceived situation, all of which are 

shaped by a philosophical stance. According to Mason and Waywood (1996), research in 

mathematics education is based on a background theory of mathematics education, which does not 

become a foreground theory even if the hypothesis becomes explicit. This means that theorizing, 

such as framing questions, collecting data, and analyzing results are determined and constructed by 

the discourse and philosophical stance of the background theory, but are not used with an explicit 

aim. Examples of such theories are postmodernism, phenomenology, or constructivism. The 

background theory hence provides the conditions for the structure of the research, but it is not itself 

a theory generated within MER. The distinction captures the fact that MER theories are traditionally 

inspired by other fields (e.g., psychology, general education, and mathematics), making the 

distinction between background and foreground theories paramount when describing the core of a 

theory. More recently, however, MER has shifted toward theory building within the research field, 

rather than relying on theories borrowed from other fields (Lesh et al., 2014). These theories do not 

necessarily build on a background theory outside MER. One can consider the grounded theory 

approach (Vollstedt & Rezat, 2019), where theory emerges from an empirical discourse rather than 

a theoretical one. Considering the growing trend of theory building within MER brings perspective 

to the remark of Bikner-Ahsbahs et al. (2014), that if background and foreground theories are 

considered “relative distinctions rather than an absolute classification, they can help to distinguish 

different views on theories” (p. 6). In paper 6, we acknowledge that theory from inside MER can have 

elements that act as background theories in research practices. Concurrently, we challenge whether 

a relative distinction is purposeful, as it may blur the fact that a background theory resides outside 

of MER and has a larger scope. Furthermore, we identify cases of the use of the relative distinction, 

where theory from inside of MER acted as background in certain situations and as foreground in 

other situations. To accommodate the need to characterize such elements and this dynamic use of 

theory, we suggested that theories from inside MER that act as background theories are at least 

referred to as background theories inside MER or framing theories.  

As already noted, the definition of theory is not agreed upon in MER. Theory generally consists of a 

core, empirical components, and an application area (Prediger, Bikner-Ahsbahs, et al., 2008) 

Bikner-Ahsbahs et al. (2014) suggest that theories should be viewed dynamically, as they are always 

in a state of flux. This is due to the inherent dialectic of theorizing: theories guide research practices 

and are in return influenced by them or even become the aim of research practices. This contrasts 

with a static view of theory as a finished analytic tool that organizes and systematizes parts of the 

real world. Although agreeing that theories are in a state of flux, Niss (2019) maintains that it “…does 

not mean that the definitions of the concepts are as well”, and that “if we refuse to offer definitions 



11 
 

of these terms, we end up taking them for granted according to our private understanding, and we 

don’t know what we are talking about!” (Niss, personal communication, May 9, 2019). Hence, he 

challenges the overly broad definitions of theory, such as, e.g., in the JRME editorial by Cai et al. 

(2019): 

In this editorial, we use the term theoretical framework broadly (similar to the 

treatment of conceptual frameworks by Eisenhart, 1991, and Lester, 2005) to 

encompass the set of assumptions, theories, hypotheses, and claims (as well as the 

relationship between them) that guide a researcher’s thinking about the phenomenon 

being studied. (p. 219)  

Radford (2008) suggests a triplet set (P, M, Q), where “theory can be seen as a way of producing 

understandings and ways of action based on: 

• A system, P, of basic principles, which includes implicit views and explicit statements that 

delineate the frontier of what will be the universe of discourse and the adopted research 

perspective. 

• A methodology, M, which includes techniques of data collection and data interpretation as 

supported by P. 

• A set, Q, of paradigmatic research questions (templates or schemas that generate specific 

questions as new interpretations arise or as the principles are deepened, expanded or 

modified). (p. 320) 

Radford (2012) later extended the definition to encompass results (R), which drive the development 

of P, M and Q: “There is indeed a dialectical relationship among the various components of a theory. 

The dialectical relationship is mediated by the results that a theory produces” (p. 5). Radford’s 

definition addresses clearly ‘the core’ of a theory in terms of the system of P and ‘the application’ by 

M and Q.  However, ‘the empirical component’ is a connotation in the system of P.2  

Radford does contemplate how facts of objects appear throughout the history of scientific 

investigation, and he outlines two positions. In the first position, “the fact refers to general 

principles; the fact is a particularization of the general” (Radford, 2012, p. 3). In the second position, 

“the fact generates the principle through an inductive process” (Radford, 2012, p. 3). He concludes: 

 

 

 

2 Examples of object and phenomena in principles are found in Radford (2018) 
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“The understanding of the phenomena under investigation can only be achieved against the 

background of general principles” (Radford, 2018, p. 4). From his conclusion, we may understand 

that principles are general facts about objects. An example, formulated by Radford, is a principle of 

constructivism about the phenomenon of knowledge appropriation: “knowledge is not passively 

received but built up by the cognizing” (Radford, 2012, p. 4). Despite Radford’s elaboration on 

objects of theory, Bikner-Ahsbahs and Prediger (2014), in their comparison of five different 

theoretical approaches, found a need to add “key constructs” to P in the triplet PMQ. Key constructs 

is a term for the objects and phenomena under study, and it underlines a need for stronger 

clarification of the empirical component than Radford’s definition offers. Thus, the implicitness of 

objects in Radford’s definition is problematic since the ‘objects’ of research are essential when 

considering which theories are comparable and compatible, and how. As Niss (2019, personal 

communication, May 9, 2019) argues, a theory must be a theory of something, and Niss and Jankvist 

(2022) suggest a definition that centralizes the objects and phenomena of a theory: 

 A theory is a theory of something, i.e., it deals with certain sorts of objects and 

phenomena and includes terms for these. Its purpose is to produce corroborated 

claims about these objects and phenomena, typically in response to questions posed 

about them. These claims are generated by some means, on some grounds, involving 

some fundamental methodology/ies. (p.17) 

There are notable similarities between Radford and Niss and Jankvist. Niss and Jankvist’s definition 

includes “questions” similar to Radford’s Q; Niss’ and Jankvist’s “means” and “methodology/ies” are 

similar to Radford’s M; and finally, Niss’ and Jankvist’s “corroborated claims” and “grounds” are 

similar to Radford’s P.  

The main difference between the two definitions is their central focus. Radford’s definition focuses 

on the set of principles. P is the first-mentioned element and reoccurs in the description of both M 

and Q. Radford’s concern with the dialectic surrounding phenomena – the system of P – gives 

strength to an elaboration of a background theor, as theory is rooted in a systematized discourse. 

Radford has so far not elaborated on the scope of his definition. It is unclear whether he differentiates 

theory elements that can be perceived as foreground theory such as theoretical framework, 

theoretical approach, and theoretical construct, which leaves an undefined cluster of theoretical 

notions.  

Niss and Jankvist’s (2022) definition focuses on objects and phenomena and the production of 

predictive or explanatory claims about such. Consequently, the values and norms of the theory are 

implicit (Prediger, Bikner-Ahsbahs, et al., 2008) in the corroborated claims and grounds. Niss 

(2007)  and Niss and Jankvist (2022) also stress that only a few actual theories exist in MER: 
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Although we would, in fact, grant the label “theory” to some constructions in 

mathematics education—e.g., Brousseau‘s (1997) theory of didactical situations, or 

Chevellard‘s (2019) anthropological theory of the didactic (ATD), and the APOS 

theory developed by Dubinsky (1991) […] At any rate, the number of theories in 

mathematics education is, at best, extremely small. (p. 5).  

Given that Mason and Waywood’s (1996) definition of background theory includes the aims and 

goals of the research, the objects studied, the methods used, and the perceived situation, Niss and 

Jankvist’s (2022) definition reflects this sense of theory. Contrary to Radford, they do consider the 

aforementioned cluster of theoretical notions that reflect foreground theory. They describe a 

theoretical perspective as one or more theoretical approaches that are part of the solution to the 

research problem. The following notions of theory are examples of the extent of different theoretical 

perspectives. A theoretical construct is a concept introduced by way of a definition. It can rest on 

certain assumptions or hypotheses and can involve certain claims. It can be a singular construct such 

as sociomathematical norms (Yackel & Cobb, 1996) or a distinction such as Tall and Vinner’s (1981) 

concept image and concept definition. A collection of one or more theoretical constructs is 

considered a theoretical framework that:  

frames—i.e., provides the foundation for—the conceptualisation, design or carrying 

out of the study, including its interpretations, analyses or inferences. The elements of 

a theoretical framework do not have to be linked so as to form a full-fledged theory. 

In fact, the framework does not even have to be coherent or exhaustive but may take 

the shape of bricolage (Cobb, 2007; Gravemeijer, 1994) of singular theoretical 

constructs. (Niss & Jankvist, 2022, p. 18) 

Finally, a theoretical approach is a conceptual and theoretical investigation of the research problem, 

usually by incorporating or developing some theoretical constructs.  

Niss and Jankvist (2022) also draw out three different target levels or grain sizes of theoretical 

approaches: local, medium, and global. Global corresponds to their definition of a theory and are 

hence scarce in MER. Medium deals with “a generic set of topics or issues across several domains” 

(p. 19), while local deals with a specific topic or issue.  

In the closing of this part, I would like to underline that the intention is not to take sides or favor one 

tradition over another. That said, to be consistent in terms and approach I will adhere to Niss and 

Jankvist’s (2022) definition of theory and notions of theory, as they offer a more elaborate system of 

notions. Prediger, Bikner-Ahsbahs, et al. (2008) appeal for a broad definition to not exclude any 

theories. Indeed, Niss and Jankvist’s (2022) approach excludes most theoretical approaches in MER 
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as a theory. However, in the cluster of notions of theory, the theoretical approach is the most 

inclusive notion, where only empirical approaches are excluded.   

2.1.1 Linking theory 

Lerman (2006) pleads for considering the diversity of theoretical approaches in MER as a source of 

richness that is necessary to grasp complexity. Prediger, Bikner-Ahsbahs, et al. (2008) argue that 

the “richness of plurality can only become fruitful when different approaches and traditions come 

into interaction” (p. 169). Fruitful interaction of theoretical approaches can advance different 

purposes, such as better understanding of theories, capitalizing on collective research results, 

obtaining coherency in MER, controlling the excessive growth theories, improving teaching and 

learning in mathematics education, and finally, guiding design research (Prediger, Bikner-Ahsbahs, 

et al., 2008).   

Networking of theories (NT) progresses fruitful interaction between different theoretical 

approaches. It has grown out of the thematic working group “Theoretical perspectives and 

approaches in mathematics education research” at the Congress of European Research in 

Mathematics Education (CERME) (Kidron et al., 2018). The group confronts the diversity of MER 

theories, both as a challenge for the research community but also as a richness that can be a starting 

point for a development. Subsequently,  NT aims to produce understanding and connections 

between the myriad of theories. Prediger, Bikner-Ahsbahs, et al. (2008) have systematized and 

termed strategies for relating theories, which they collectively call connecting strategies (Bikner-

Ahsbahs, 2016; Prediger, Arzarello, et al., 2008). The strategies draw out a one-dimensional scale 

where strategies are placed according to the degree to which they integrate theoretical approaches 

(see Figure 1). The extreme strategies of ignoring other theories and unifying globally are not 

considered as NT. In the first case, as implied, no connections are made, resulting in the cultural 

isolation of theoretical approaches. The latter speaks to the idea of one global theory of mathematics 

education, which in practice would result in ignoring conflicting theories and devaluating the 

richness of diversity that Lerman (2006) pleads for. Ultimately, unifying globally acts as a virtual 

extreme. As depicted in Figure 1, the intermediate strategies are defined as networking strategies 

that “are those connecting strategies that respect on the one hand the pluralism and/or modularity 

of autonomous theoretical approaches but are on the other hand concerned with reducing the 

unconnected multiplicity of theoretical approaches in the scientific discipline” (Prediger, Bikner-

Ahsbahs, et al., 2008, p. 17). Often more than one strategy is needed to reach the aim of a given 

process of NT. For instance, understanding others and making understandable will be the first step 

to obtain any higher degree connection. The strategies are presented in pairs that serve the same 

aim.  
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Understanding others and making own theories understandable is essential for in networking 

practices. The strategies goes beyond understanding definitions and  the hierarchy of terms and 

methodology to uncover both explicit and implicit assumptions (Prediger, Bikner-Ahsbahs, et al., 

2008). Understanding other theoretical approaches can be an aim in itself, and conversely, 

practicing NT can contribute to a deeper understanding of both one’s own and other theories, which 

is why these two strategies are an implicit permanent aim of any NT practice.  

Comparing seeking commonalities between theoretical approaches and contrasting points to 

differences. Both can take on one or more of three theoretical aims: furthering the understanding of 

the investigated approaches, positioning a theory (as valuable) in the field of theories in MER, and/or 

describing a rational for the choice of theoretical approaches on a meta-level. Comparing and 

contrasting can, like the previous strategies, be a step toward further integration.  

In contrast to the former strategies, coordinating and combining has the empirical aim of 

understanding a phenomenon or a piece of data (Prediger, Bikner-Ahsbahs, et al., 2008). These 

strategies are relevant in triangulating a phenomenon, where two theoretical approaches can give a 

richer and deeper insight and to capture phenomena that have inter-relational variables (e.g., 

students’ use of digital tools and their RC) which cannot be captured with a single theoretical 

approach. They often result in a conceptual framework but do not necessarily present as completely 

coherent. Coordinating aims at coherency between well-fitting elements from different approaches, 

whereas combining is a juxtaposition of approaches and has a less ambitious aim for the coherency. 

To ensure coherency when coordinating, theory elements should be carefully analyzed, and only 

theories with compatible cores considered coherent (Prediger, Bikner-Ahsbahs, et al., 2008).  

Synthesizing and integrating aims at theory development. These strategies are a continuation of 

coordinating, moving beyond the understanding of empirical phenomena to theory building with 

coherent approaches. The two strategies differ in the status of the theoretical approaches in play. 

Figure 1 ‒ Prediger, Bikner-Ahsbahs, and Arzarello (2008). Landscape of strategies for connecting 
theoretical approaches 
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Synthesizing demands a symmetry between the approaches, as when “two (or more) equally stable 

theories are taken and connected in such a way that a new theory evolves” (Prediger, Bikner-

Ahsbahs, et al., 2008, p. 173). Integrating is when there is a difference in scope between the 

approaches, and elements of only one approach are integrated into the other.  

2.1.2 Methods and practices for NT 

Each of the strategies can be carried out using different methods, which will spring from the 

approach, focus, concepts and methods in play, and the aims of the networking. Hence, there are a 

diversity of methods and methodology within each strategy (Prediger, Bikner-Ahsbahs, et al., 2008). 

However, some strategies can be considered particularly relevant to pair with specific 

methodologies. Coordinating and combining fit the aims of design research (diSessa & Cobb, 2004) 

for understanding an empirical case and developing theories (Prediger et al., 2008; Prediger, 2019), 

for example, presenting a case where strategy coordinating is embedded in a design research study 

to strengthen the empirical analysis and the development of design principles (Van den Akker, 1999).  

Networking practice involve close attention to both the theoretical approaches. The higher 

integration, the more carefully one must consider coherency and compatibility of the background of 

the theoretical approach and the different elements of the theory (Prediger, Bikner-Ahsbahs, et al., 

2008). Radford (2008), in continuation of his definition of theory, suggests comparing theories by 

the set (P, M, Q) to reveal commonalities, distinctions, and compatibility. He argues that connections 

can be made between the same elements, e.g., between the principles of each theoretical approach, 

or across elements, e.g., between the principles of one theory and the methodology of another. 

Radford (2008) also conjectures that: “theories are more likely to be connected if their theoretical 

principles (or at least some of them) are ‘close’ to each other” (p. 323).   

Niss and Jankvist (2022) suggest a graph-theoretical metaphor in which a set of nodes are theoretical 

entities that may be linked by edges to form a network. The links can be different, and they argue 

that: “A fundamental issue for linking two theoretical entities is whether these represent two 

different ways of dealing with the same object(s) or phenomena, or whether they deal with different 

objects or phenomena” (p. 32). Like Radford (2008), they stress that the purpose of connecting 

theories is fundamental to the nature of the connection. In their considerations of linking KOM to 

other theoretical approaches, they reflect on two purposes. Mutual fertilization by linking a 

theoretical approach to KOM, where both elements are enriched with perspectives they did not 

contain on their own and a methodological means to uncover a phenomenon of which each 

theoretical approach has methods to capture different aspects. These goals fall within the strategies 

of coordinating and combining, which Niss and Jankvist argue to be the highest degree of integration 

that can be done with the KOM framework.  
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To make connections between theoretical approaches, Bakker (2016) suggests the use of boundary 

objects to assist in crossing the cultural boundary between theoretical approaches.  Boundary objects 

must be 

both plastic enough to adapt to local needs and the constraints of the several parties 

employing them, yet robust enough to maintain a common identity across sites. They 

are weakly structured in common use, and become strongly structured in individual 

site use. (Star & Griesemer, 1989, p. 393) 

Bakker (2016) elaborates on how similarities can be drawn between the approach of boundary 

crossing and NT, as both practices consider how “people seek to make connections between practices 

or praxeologies that have different origins and purposes” (p. 271). To cross boundaries, they must 

become permeable through communicative connections and efforts of translation. In this optic, 

boundary objects are artifacts with a bridging function between practices so that initial boundaries 

between research practices become permeable (Bakker, 2016). In the context of this study, two 

separate research practices are in play, the study of students’ RC and the study of students’ use of 

tools. A theoretical boundary object can assist in making mutually fertilizing connections between 

the two practices. 

2.2 OVERVIEW OF THE PROJECT AND THEORETICAL FRAMING 
Moving on from fundamental questions of theory, I now present the concrete theoretical framework 

and approaches of the study and elaborate the state of the art of central aspects. 

To provide an overview of the theoretical elements in the project, I use the pentahedron of Zbiek et 

al. (2007) (see Figure 2), which signifies how digital technology influences various aspects of 

mathematical learning among students. It contains the nodes student, mathematical content, 

mathematical representation, mathematical activity, and digital tool. Lines illustrate the 

interrelations between all nodes, and as the digital tool mediates activity between all nodes, the 

dotted lines illustrate that the digital tool influences not only each node but also each relationship 

(Zbiek et al., 2007). The pentahedron hence illustrates a closed system with the student as actor and 
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the tool as mediator between nodes. Each node of the project is specified in Figure 3. As mentioned 

in the introduction, the digital tool used in the study is GeoGebra, and the mathematical activity is 

the exercise of RC in justification and concern students in lower secondary schools. The 

mathematical content is variable as a general number in ordered pairs represented symbolically and 

graphically in the coordinate plane. This allows for using the algebra and graphic views in GeoGebra.  

I utilize different perspectives to capture the different relationships. KOM (Niss & Højgaard, 2019) 

conceptualize the relationship student-mathematical activity and the IAME conceptualize the 

relationships student-digital and tool-mathematical content. 

Figure 2 ‒ Replication of Zbiek et al. (2007) pentahedron with nodes: student, mathematical 
representation, mathematical content, mathematical activity, and the digital tools and relations among 
them. Dotted lines represent the influence of the digital tools on nodes and relations between nodes 

Figure 3 ‒ The nodes of pentahedron concretized with respect to the study 



19 
 

The illustrations in Figure 4 show that the common node is the student but otherwise, there are no 

overlaps between KOM and the Instrumental Approach. To bridge the two, the lack of overlap must 

be addressed in the theory development of the study. What also appears is that the node 

mathematical representation and its relationships are not theorized and hence mark the study’s 

limits. However, the node is relevant and is elaborated in this chapter 6, with regard to DGAE. The 

mathematical content node concerning variables in ordered pairs is elaborated in Chapter 6 for the 

context of designing tasks.  Finally, even though the pentahedron is represented as a closed system, 

it is part of a more extensive, surrounding system containing relationships to, e.g., other students, 

the teacher, and institutions, which are also not theorized within the study.  

In the follow section 2.3, describe the KOM framework. Section 2.4, position the study within 

reasoning and justification in MER and section 2.5 discuss GeoGebra within the traditions of both 

CAS and DGE, and describe GeoGebra’s interface and how variables are represented and used in 

GeoGebra. Finally, section 2.6 discuss and explain the IAME.  

2.3 THE KOM-FRAMEWORK 
The competency description framework KOM describes mathematical mastery from the perspective 

of competence. It was first introduced in the KOM report (Niss & Jensen, 2002), which presented 

the results of the KOM project, developed by an extensive group of people lead by Niss, and organized 

and founded by the Council of Science Education and the Ministry of Education in Denmark (Niss & 

Højgaard, 2011). Since then, it has been translated into English in 2011 and revised in a more 

condensed form aimed at an international audience in 2019 (Niss and Højgaard (2019). 

Figure 4ab – a) The KOM framework conceptualizes the relationship student-mathematical activity. b) 
The Instrumental Approach to Mathematics Education captures the relationships student-digital and 
tool-mathematical content   
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In KOM, a mathematical competency is defined as “someone’s insightful readiness to act 

appropriately in response to a specific sort of mathematical challenge in given situations” (Niss & 

Højgaard, 2019, p. 6). In total, there are eight distinct but related competencies, which are illustrated 

in Figure 5.   

The competencies are divided into two categories: asking and answering in, with, and about 

mathematics and dealing with mathematical language and tools. I focus on the RC in the first 

category, which I will describe further in the next section. However, it is important to note that 

tackling a mathematical challenge requires multiple competencies. While one competency may be in 

focus in a particular educational or research setting, other competencies will be relevant. For 

example, in this study, using a digital tool requires the students’ aids and tools competency, as well 

as representation competency and symbol and formalism competency to handle the multiple 

representations of GeoGebra. Therefore, after describing the RC, I also account for those.  

The mastery of analyzing or producing mathematical arguments require RC. Arguments can be 

presented orally or in writing and can take various forms, such as exemplifying and deductive or 

formal proofs. An argument is a series of statements connected by inference and used to support 

mathematical claims or solutions to mathematical problems (Niss & Højgaard, 2011, 2019).  

A competency can be described and assessed according to its degree of coverage, radius of action, 

and technical level. Essentially, this captures that competencies are related to form, situations, and 

complexity: 

Figure 5 ‒ The KOM flower depicting the eight mathematics competencies 
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• The degree of coverage concerns the aspects of the competency. For the RC, these aspects 

are to actively participate in oral and written reasoning for mathematical claims and critically 

analyze and assess existing justifications and justifications put forward by others. The forms 

of reasoning can be placed on a wide spectrum, from providing examples to rigorous proof.   

• The radius of action is the variety of different contexts, mathematical or general, in which 

the competency can be used. Contexts can be mathematical domains, different social 

situations, or different mathematical situations. 

• The technical level concerns the sophistication of concepts, results, theories and methods 

used within the competency.  

What activities fall within a given competency can in some cases be unclear. In principle, the ability 

to carry out pure routine operations may fall within the RC since it involves justifying the results of 

calculations. However, what one person may consider a routine operation, another person may view 

as an insurmountable problem. Therefore operations is included under “the competency dealing 

with mathematical symbols and formalisms while being able to activate the operation belongs under 

the RC if this activation demands creativity, analysis, or overview” (Niss & Højgaard, 2011, p. 61). 

The symbol and formalism competency is, hence, related to the exercise of RC and in particular the 

technical level.  

Likewise, the problem handling competency is particularly relevant, as problem-solving constitutes 

a context for the student’s exercise of RC (Niss & Højgaard, 2019). The process of obtaining an 

answer to a mathematical problem is core in problem handling competency as it involves posing and 

solving mathematical problems by devising and implementing problem-solving strategies. It is 

closely related to the RC, as it concerns justifying strategies and solutions. 

When it comes to using a DGAE, there are certain competencies that are relevant. The multiple 

representations in a DGAE require students to translate or interpret between these representations. 

This requires representation competency, as well as understanding the strengths and weaknesses of 

different representations (Niss & Højgaard, 2019).  

Finally, the tools and aids competency is relevant, as it encompasses the constructive use of tools in 

mathematical work. This also involves considering the affordances and limitations of different tools. 

Niss and Højgaard (2019) underline the diverse physical properties of tools, which may not 

necessarily have direct implications in mathematical contexts. This presents challenges that require 

thoughtful consideration when integrating tools into mathematical situations. 

The development of a person’s mathematical competence is achieved through active participation in 

various mathematical situations. Competencies can be assessed over time or compared between 
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individuals as progress in the three dimensions (Niss & Højgaard, 2011, 2019), but it is important to 

remember that competency is context-specific. This study aims to examine the processes of 

justification in the context of RC, rather than evaluating progress of student’s RC. Verbs such as 

activating, implementing, displaying, and expressing can be used to describe a student’s use of their 

competency. To emphasize the students as learners, I use the verb exercise. Thus, students are 

exercising their RC in their “enactment of mathematical activities and processes” (Niss & Højgaard, 

2019, p. 3). 

2.4 REASONING AND JUSTIFICATION IN SCHOOL MATHEMATICS 
The terminology of the reasoning literature in MER presents a diversity of perspectives and 

definitions. This diversity necessitates defining the terminology used in this study and describing 

how it situates the study within the broader literature on reasoning in mathematics education. Across 

the literature, central terms like reasoning, proof, argumentation, and justification may overlap or 

even be used interchangeably, but they can also be looked at from specific perspectives. 

The study focus on the process of justification, however, to position the study I will first consider 

reasoning, proof, and argumentation in mathematics education. 

Since RC is the competency in focus, I use reasoning as an overarching term in the remainder. 

Reasoning encompasses both the product and the process by which it comes to be, meaning that an 

argument is a product of argumentation, a proof is a product of proving, and a justification is a 

product of justifying/justification.  

Reasoning can have different functions. All types of reasoning processes have in common that they 

aim to change the epistemic value of a statement (Duval, 2007), such as a conjecture, hypothesis, or 

theorem. The processes differ in how this change is obtained (e.g., through induction or deduction), 

the grounds on which they are based, and the types of claims they are relevant to. 

Hanna (2000) provides a list of the different functions of reasoning and proof in mathematics:   

“• verification (concerned with the truth of a statement)  

• explanation (providing insight into why it is true)  

• systematisation (the organisation of various results into a deductive system of 

axioms, major concepts and theorems) 

• discovery (the discovery or invention of new results)  

• communication (the transmission of mathematical knowledge)  
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• construction of an empirical theory  

• exploration of the meaning of a definition or the consequences of an assumption 

• incorporation of a well-known fact into a new framework and thus viewing it from a 

fresh perspective” (p. 8) 

In an educational setting, some functions hold relevance, and according to Hanna (2000), reasoning 

and proof should be at least explanatory to have educational significance. 

2.4.1 Argumentation and proof 

In KOM, arguments are considered chains of statements linked by inferences to justify mathematical 

claims (Niss & Højgaard, 2019). Hence, argumentation takes place in different forms of reasoning.  

An argument can be considered from a structural perspective. Toulmin (2003) poses a geometric 

model (see Figure 6), rooted in jurisdiction and thus developed to investigate what constitutes a valid 

argument from an epistemological and psychological stance. His model schematizes the basic 

elements of an argument: a claim along with a qualifier, data, and a warrant. The claim is a statement 

or conjecture, and its epistemic value is indicated by the qualifier (e.g., false, possible, likely, more 

likely, or true), an expression of the probability of the claim. The qualifier is established based on the 

data that support it (the evidence) and the warrant, which includes inferences connecting the data 

to the claim. The role of the warrant is “to show that, taking this data as a starting point, the step to 

the original claim or conclusion is an appropriate and legitimate one” (Toulmin, 2003, p. 91). 

Extended elements are the backing, which can provide support for the warrant, and the rebuttal, 

which can include limitations of the claim or counterarguments. 

 

Figure 6 ‒ Elements of Toulmin’s (2003) argumentation model 
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Another structural perspective, this one rooted in logic, is that of Peirce (Cohen, 1933) who describes 

three basic inference modes: deductive, inductive, and abductive. These are commonly discussed in 

the literature on reasoning and proof.   

In Toulmin’s argumentation model, (Jeannotte & Kieran, 2017). Deductive reasoning involves 

arriving at "new information derived from a set of premises via a chain of deductive inferences" 

(Harel & Weber, 2018, p. 1). The deductive structure is crucial in rigorous proofs, with proof being a 

particular kind of argument derived from assumptions and propositions endorsed by the 

mathematical community (Weber et al., 2014). 

Induction infers a warrant from the data and a claim about the data (Jeannotte & Kieran, 2017). It 

is related to using examples to provide validity, or generalizing based on examples, including 

instances where a student relies on examples or mental images to verify the validity of an argument 

(Manouchehri & Sriraman, 2018). 

Abduction can take two forms. It either has a structure that infers data from the claim and the 

warrant, or one that infers data and warrants from the claim (Eco, 1986; Jeannotte & Kieran, 2017; 

Pedemonte & Reid, 2011). Abduction is related to the explorative processes of reasoning, e.g., to 

discover a pattern or infer a rule, and it is often part of both the deductive and inductive processes.  

2.4.2 Justification and justifying 

While argumentation and proving have been extensively researched in MER, justification has 

received less attention (A. J. Stylianides & Stylianides, 2022). In KOM, justification is a general term 

for the argumentation for a mathematical claim. In this study, however, I follow a more narrow 

understanding of the term, considering justification particular to a problem-solving process, e.g., 

when students are asked to explain and warrant the answer for a given problem. Bieda and Staples 

(2020) define mathematical justification as “the process of supporting your mathematical claims 

and choices when solving problems or explaining why your claim or answer makes sense” (p. 103). 

It should be noted that some authors use the term reasoning correspondingly. For example, Lither 

(2008) defines reasoning as  

the line of thought adopted to produce assertions and reach conclusions in task 

solving. It is not necessarily based on formal logic, thus not restricted to proof, and 

may even be incorrect as long as there are some kinds of sensible (to the reasoner) 

reasons backing it. (Lithner, 2008, p. 257). 

However, as previously described, I use reasoning as a collective term for a range of forms of 

reasoning. What is essens of justification is the context of problem solving, and that the epistemic 

value is assigned by the reasoner rather than the general mathematics community. Justification 
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processes are not necessarily linear, as “students can take various paths in making sense of the claim, 

revising their stance on the truth value of the claim, or settling on a statement that is acceptable to 

their peers” (Lesseig & Lepak, 2022, p. 96). Early studies have elaborated on the social perspectives 

that influence what a student might conceive as convincing. Yackel and Cobb (1996), Wood (1999), 

and Wood et al. (2006) explored the relationship between explanation and justification, 

investigating the nature of students’ responses, revealing sociomathematical norms guiding 

mathematical activity in the classroom. Simon and Blume (1996) viewed justifications as the 

responses students offered when asked to provide mathematical evidence, and they explored criteria 

for acceptable justifications within the teacher community. Dreyfus (1999) distinguished between 

descriptive and justificative modes of thinking, emphasizing the role of the activity in the classroom 

community. Common to these studies is the emphasis on the classroom culture to determine what 

constitutes a justification. From that perspective, what counts as a sufficient justification is cultivated 

by the teacher and students in the classroom, and to a lesser extent, the general mathematics 

community. This does not mean that the justification cannot rely on mathematical theory or lack 

deductive steps. However, if that is the case, it is a condition cultivated in the classroom or by the 

students participating in the process. Jeannotte and Kieran (2017) consider justifications to be 

validating processes of narratives that “by searching for data, warrant, and backing, allow for 

modifying the epistemic value of a narrative” (p. 12) and elaborate thus: 

The elements supporting the process are constrained by meta-discursive rules within 

a certain community. For example, the change from likely to true has to be based on 

a deductive structure. On the other hand, in changing from likely to more likely, some 

meta-rules constrain the process, but a deductive structure is not necessary 

(Jeannotte & Kieran, 2017, p. 12).  

Meta-discursive rules govern how we discuss and reflect on our own discourse (Sfard, 2008). It is 

fundamental to determine the meta-discursive rules in a particular community if to infer the 

epistemic value of a claim. This is not the approach taken in this study, however. It can be assumed 

that in many lower secondary mathematics classrooms, deductive structured arguments are not (yet) 

developed as a practice, and a deductive step cannot be a meta-discursive rule related to the 

epistemic value true, as it would be in higher education. From the student’s perspective, obtaining 

the epistemic value true is rather based on inferences from the convictions of the participating 

students. G. J. Stylianides (2008) suggests two “non-proof” arguments. The first is empirical 

justification, where the solver checks a proper subset of possible cases. The second is rationale, 

meaning if an argument “does not make explicit reference to some key accepted truths that it uses 

(in the context of a particular community where these truths can be considered as key), or if it uses 

statements that do not belong to the set of accepted truths of a particular community” (G. J. 



26 
 

Stylianides, 2008, p. 12). Empirical justification and rationales I consider likely to occur in 

justification processes. Although some studies confront students’ reliance on empirical justification 

as a limitation to be overcome (e.g., Duval, 2007; Harel & Sowder, 2007; G. J. Stylianides & 

Stylianides, 2009), other studies highlight the significant role of examples in the justification 

process. Studies such as  Pedemonte and Buchbinder (2011), Zazkis et al. (2008), and Knuth et al. 

(2019) demonstrate how testing specific examples enables students to form conjectures and explore 

the boundaries of generalizations. Importantly, students’ empirical investigations have the potential 

to unveil mathematical relationships and structures that foster a deeper comprehension of the 

underlying concepts. Indeed, justification can promote understanding among engaged participants 

(Staples et al., 2012). However, students may accept justifications without grasping underlying 

mathematical concepts (Lesseig & Lepak, 2022). In this sense, Lithner’s (2008) distinction between 

imitative and creative reasoning emphasizes the importance of students’ engagement with sense-

making in reasoning processes such as justification. Imitative reasoning is anchored in either 

memorized solutions, the enactment of algorithms, or authorities such as technology, peers, or 

teacher guidance. Creative reasoning involves novelty in the argument of the justifier in support of 

the plausibility of a claim (the epistemic value, likely), and it is anchored in intrinsic mathematical 

properties (elaborated in 6.1.1).  

2.5 DIGITAL TOOLS IN MER 
Digital tools have garnered interest in MER for decades. One of the pioneers in this field was Papert 

(1980), who advocated for the use of digital tools as a means of constructing knowledge and 

encouraging critical thinking. This optimism toward the potential of digital tools in mathematics 

education was also reflected in the first ICMI study on the topic (Churchhouse et al., 1986). However, 

it has since been recognized that the educational value of digital tools is not inherent, but must be 

promoted within the educational context (Drijvers et al., 2016), as the same digital tool can both 

enhance and replace mathematical competency and capacities (Niss, 2016).  

Digital tools can be utilized to delegate processes, such as calculations or drawing figures, that are 

tedious, difficult, or prone to producing inaccurate results (Buchberger, 1990; Hoyles, 2018). 

Outsourcing processes can free up students’ time to focus on other activities that develop conceptual 

knowledge, such as investigating the results or the processes themselves (e.g., Gyöngyösi et al., 2011; 

Segal et al., 2016). However, outsourcing can also black box (Buchberger, 1990) the processes, 

making them inaccessible for students to understand and causing conceptual misunderstandings 

when interpreting results (Jankvist & Misfeldt, 2015). Therefore, the use of digital tools in 

mathematics education should be evaluated based on their educational value so that it supports 

students’ conceptual development (Artigue, 2002).  
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GeoGebra combines geometric and algebraic features from CAS and DGE. CASs were originally 

developed in the 1960s for scientific professions and later became commonly used in universities for 

complex mathematical computations (Roanes-Lozano et al., 2003), thus disseminating into 

mathematics education. The first DGEs were developed in the 1990s with the didactical purpose 

(Roanes-Lozano et al., 2003) of teaching and learning Euclidian geometry and later, coordinate 

geometry and measuring and calculating geometric objects (Oldknow, 2002). Consequently, the 

syntax of DGE is more accessible for learners than CAS. CASs and DGEs have increasingly 

incorporated features from one another, and some software has aimed at a fuller integration, such 

as TI-Nspire and GeoGebra (Freiman, 2014; Sutherland & Rojano, 2014).  

The potential of multi-representation is one of the features of DGE and CAS often highlighted in the 

literature (Drijvers et al., 2010). Representations are instantaneously translated or treated, and a 

vast number of examples can easily be generated due to dynamic features, such as dragging of objects 

and sliders controlling variables and animations. Such interaction results in feedback in the form of 

computation results or translations between representations (Bikner-Ahsbahs et al., 2023; Bokhove 

& Drijvers, 2012; Olsson, 2018). The feedback allows students to explore, explain, or verify results 

and conjecture about the underlying rules or patterns, explaining results or translations (Kaput, 

1992; Kaput & Schorr, 2007; Moreno-Armella et al., 2008).  

In DGE, this involves dynamic constructions of robust figures or measurements of geometric objects 

for the exploration of relationships within the graphic representation of Euclidean geometry (e.g., 

Baccaglini-Frank, 2019; Højsted, 2021; Leung, 2008; Leung, 2014; Leung et al., 2013; Mariotti, 

2012; Olivero & Robutti, 2007). 

In CAS, the translation between representations is more commonly investigated, e.g., students’ 

exploration of functions and their graph (e.g., Artigue, 2002; Bach, 2022; Bloch, 2003; Granberg & 

Olsson, 2015; Guin & Trouche, 1998; Trouche, 2003). The algebraic features of GeoGebra can also 

be used to explore translation between registers and conjecture about symbols in an educational tool, 

rather than a professional tool. Nevertheless, this has mainly been explored with respect to functions 

(e.g., Bach, 2023; Binti Misrom et al., 2020; Granberg & Olsson, 2015) and rarely with a variable as 

a general number. 

According to my own review (Paper 1), the artifacts of GeoGebra’s algebra view, and how they can 

aid in reasoning in relating to variables as general numbers, are not well understood. Few studies 

have been conducted on this topic, such as those by Soldano and Arzarello (2017) and Tanguay et al. 

(2013). They have shown that using a slider tool to assign numeric values to a variable can help 

students make conjectures about algebraic relationships, such as proportions and ratios. The slider 

allows students to visually test these conjectures. Moreover, Lagrange and Psycharis (2011) observed 
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students solving LOGO tasks and found that when students can manipulate algebraic expressions, 

they are more likely to make conjectures about the symbolism in algebraic relationships. 

One of the phenomena discussed in relation to students’ use of digital tools for reasoning is their 

reliance on empirical knowledge (Harel & Sowder, 2007) or phenomenological evidence (Baccaglini-

Frank, 2019). To counter this tendency, Laborde and Laborde (1995) advocated for designing tasks 

for DGE that could only be solved using geometrical knowledge. The same argument can be applied 

to algebra tasks in a DGAE. However, this approach does account for the epistemological gap 

(Sabena et al., 2014). Teachers may expect a theoretical argument while students approach their 

answers experimentally, trying to make sense of what they see and explore on the screen. Therefore, 

another approach is to capitalize on students’ reliance on empirical knowledge. For instance, Olive 

et al. (2010) argues that “by observing properties of invariance simultaneously with manipulation of 

the object, there is potential to bridge the gap between experimental and theoretical mathematics" 

(p. 150).   

2.5.1 The interface of GeoGebra classic 

GeoGebra offers a range of mathematical education tools and resources. The online version of 

GeoGebra classic was used for this study (see Figure 7). Teachers or researchers can customize the 

software environment by, e.g., creating restricted environments or designing templates and 

resources, tailoring the software toward specific student groups and learning objectives. 

Figure 7 ‒ GeoGebra’s classic interface: green frames indicate the toolbar, yellow frames indicate the 
algebra view, and blue frames indicate the graphic view 
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The interface is flexible and allows for initiating different views. Views can be enabled and disabled, 

and various settings can be altered to change the appearance. For instance, the graphic view can be 

displayed with or without a coordinate system. Additionally, the algebra view can report values, 

definitions, and descriptions of created objects.   

This study utilizes two views: the graphic view (blue frame, Figure 7) and the algebra view (yellow 

frame, Figure 7). The algebra view has an input bar for commands to create objects, perform 

computations, and take measurements. A complete list of available commands can be found at 

https://wiki.geogebra.org. Once a command is input, the output is displayed in the algebra view, 

while the objects created are represented in the graphic view. The graphic view provides a visual 

representation of objects, which can be manipulated by dragging them across the screen, depending 

on the construction constraints that determine their dynamic movement. The toolbar (green frame, 

Figure 7) contains various menus with categorized tools that enable the interactive construction of 

objects and measurements in the graphic view. 

2.5.2 The representation of variable as a general number in GeoGebra 

In GeoGebra, there are two ways in which variables as general numbers appear: implicitly or 

explicitly (Gregersen, 2022). In this study, the explicit use of a variable is used, since the implicit use 

can result in representational structures that are algebraically difficult to understand for the age 

group (Jackiw, 2010; Mackrell, 2011). Explicit variables appear as slider tools that control and assign 

a value to a variable. By moving a point on the slider, the numerical value changes accordingly. This 

variable can be referenced in other objects. See and try an example here: 

https://www.geogebra.org/m/ybywwzha.  

Implicit variables can be achieved in two ways. Dynamic objects can be constructed with geometric 

tools or other objects can be referenced when constructing new objects. As a result, these objects are 

dependent or co-vary. The variable hence exists by the construction rather than as an independent 

symbolic representation. See and try an example here: https://www.geogebra.org/classic/urgqu3af.  

2.6 THE INSTRUMENTAL APPROACH TO MATHEMATICS EDUCATION 
Rabardel developed the Instrumental Approach (IA) during the 1990s and 2000s, drawing 

inspiration from his PhD supervisor, Vergnaud’s (1998b) conceptualization of schemes and the 

research field of cognitive ergonomics. The main topic of his research was cognition related to the 

use of instruments. Fundamental principles of the IA are: 

• the distinction between artifact and instrument 

https://wiki.geogebra.org/
https://www.geogebra.org/m/ybywwzha
https://www.geogebra.org/classic/urgqu3af
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• the concept of instrumental genesis with its two movements dialectically connected: 

instrumentalization from the user to the artifact and instrumentation from the artifact to the 

user 

• and the conceptualization of instrumental genesis in terms of the elaboration or 

appropriation of schemes. (Artigue, 2023, sec. 3.1) 

The IA, also known as the Theory of Instrumental Genesis, was adapted for mathematics education 

by French scholars Defouad (2000) and Trouche (1996). Their doctoral theses initiated the 

Instrument Approach to Mathematics Education (IAME). Defouad’s work emphasized the 

anthropological theory of didactics (ATD) by considering praxeology in institutions. He focused on 

students’ use of instrumental techniques and material signs in human activities, as well as the 

discourse used to explain and justify these techniques. Trouche’s thesis emphasized the cognitive 

perspective of Vergnaud and focused on the evolution of schemes of instrumented action in the 

transition from graphic to symbolic calculators. In this study, I follow Trouche’s position, which has 

been developed and expanded in collaboration with colleagues, including Giun (Guin & Trouche, 

1998), Drijvers (Drijvers et al., 2013; Trouche et al., 2013), Monaghan (Monaghan et al., 2016), and 

Artigue (Artigue & Trouche, 2021). IAME has since disseminated into other theoretical traditions, 

such as the theory of semiotic mediation (Bartolini & Mariotti, 2008) and activity theory (Bikner-

Ahsbahs et al., 2023).   

IAME is a developmental theory that conceptualizes how a learner utilizes an artifact in activities 

associated with specific situations (e.g., using a DGE to construct a robust rectangle or using CAS to 

solve a differential equation). During the learning process, to effectively utilize the relevant 

components of the artifact for a given situation or task (e.g., the right angle tool in a DGE or the 

solve/de-solve functionality of a CAS), these components are transformed into an instrument for the 

learner (Artigue & Trouche, 2021). The construct of an instrument is distinct from the artifact. An 

artifact, whether material or non-material, is a product of human creation that carries cultural and 

social significance (Drijvers et al., 2013). An instrument is a hybrid construct with components of 

the artifact and cognitive components in terms of schemes (to be elaborated subsequently). The 

construct instrument thus draws on the psychological tradition of considering tools and aids 

functional extensions of the body and mind (Rabardel & Bourmaud, 2003). Developing an 

instrument is not a trivial endeavor. Imagine learning to play the trumpet, drive a car, or use a new 

piece of software. It takes time and effort to understand the mechanics and obtain fluency. This 

process is called instrumental genesis. 

The instrument serves as a mediator in human activities, providing meaning and facilitating the 

interaction between individuals and their environment (Drijvers et al., 2013). Rabardel and 
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Bourmaud (2003) assert: “It is not only the artifact that mediates: the instrument is at the heart of 

mediated activity”. This distinction might seem insignificant, but it emphasizes that the mediated 

activity has a cognitive component. Mediation can take various forms, including pragmatic and 

epistemic. Pragmatic mediation happens when the student performs actions directed toward the 

object, such as measuring the sum of the interior angles of a triangle in a DGE. Epistemic mediation 

happens when the instrument is used as a means for the object to provide knowledge to the students. 

For example, if the student measures angles, drags the triangle’s vertices, and realizes that the sum 

is always 180°. This example shows both the cognitive and artifactual components of mediation. It 

is made possible by the measuring tool in the DGE and its dynamic features, as well as the student’s 

knowledge of how to perform the necessary actions and their conceptual understanding of angles. 

In Drijvers et al. (2013), instrumental genesis is described as consisting of three dual relationships. 

The first of these is between the subject and the artifact, as described above. The second is the 

relationship between instrumentation and instrumentalization. 

Instrumentation is the influence of a student’s actions on their own knowledge in the process of 

learning to use an artifact and turning it into an instrument for a task. (Drijvers et al., 2013; Trouche, 

2020). Thus, instrumentation is considered “not only as an action (by which someone acquires an 

instrument) but also as the influence of this action on a subject’s activity and knowledge” (Trouche, 

2020, p. 404). In addition, the artifact’s affordances and constraints influence the subject’s activity. 

Instrumentalization is less described and researched (Trouche, 2020). It is directed from the subject 

toward the tool, as the student influences or even disrupt the artifact in the process of instrumental 

genesis.  “Instrumentalization can thus lead to enrichment of an artifact, or to its impoverishment” 

(Trouche, 2005, p. 148).  

These two dualities are consistent with how Trouche has previously described instrumental genesis. 

However, the third duality scheme-technique, has been more controversial. I will discuss the 

controversy in the next section. This relationship particularly highlights Vergnaud’s influence on 

IAME. Following Vergnaud (1997), schemes are defined as “the invariant organization of behavior 

for a certain class of situations” (p. 12). As the subject learns to use specific components of the 

artifact for classes of tasks or situations, specific techniques and underlying schemes that control 

these techniques take shape, expand, and solidify. The thinking process is perceived as perceptual 

and gestural activity that unfolds over time and adheres to a particular structure, but activity itself is 

not invariant. Indeed, even though activity involves rules governing outward behavior and internal 

cognitive processes, rules are adapted based on the specific context. Schemes consists of different 

elements: 
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• Goals, subgoals, and expectations 

• Rules of action: They can be considered the generative component of schemes, responsible 

for generating behavior based on situational variables. 

• Operational invariants: They primarily involve concepts-in-action (to categorize and select 

information) and theorems-in-action (to infer appropriate goals and rules from the available 

and relevant information). 

• Possibilities of inference: These possibilities are essential since inference and computation 

are inherent in any activity (Vergnaud, 1998b, p. 229).  

Drijvers et al. (2013) then consider the technique-scheme duality to be the relationship between 

gesturing and thinking. However, the use of the term technique has been debated, and I will 

contribute to this debate with my own position in the next section. 

2.6.1 Techniques in the instrumental act 

As the early development of IAME was influenced by French traditions, the term technique was 

adopted from ATD but used and developed in relation to scheme. However, the adaptation of 

technique, as described by Artigue (2023), has been heavily debated. The essence of the debate 

concerns the theoretical reduction and the incompatibility between their background theories 

(Mason & Waywood, 1996). The ATD analyzes cognition in mathematics as praxeology, which 

consists of the practical set: a type of task and a technique (to solve such tasks), and of the logos set: 

a technology (the terminology) and a theory (the reasoning). Together they are represented by the 

quadruplet [T, τ, θ, ϴ] (Chevallard, 2019). Consequently, in ATD you cannot talk about a technique 

without the context of the other three elements. As elaborated above, IAME considers cognition in 

terms of schemes. Remember that a scheme is defined as specific to types of situations or types of 

tasks. This part is consistent with ATD as the practical set. However, instead of the logos set, the 

IAME operates with schemes. This is the quarrel.  

In IAME, techniques are explained with reference to the ATD (e.g., Trouche, 2005) but also as a 

particular organized set of gestures “distinguishing an elementary level of command constraints and 

a more complex level of organization constraints […] within students’ activity, between a level of 

gesture and a level of technique” (Trouche, 2005, p. 147). Trouche (2005) relates techniques to 

schemes and considers an instrumented technique to be a technique that integrates one or several 

artifacts, which are guide and form an instrumented action scheme.  

However, Artigue (2023) critiques this: 

… thinking in terms of praxeologies means that techniques cannot be isolated from 

the technological discourse that describes, explains and justifies them. In a sense, 
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reducing techniques to gestures is akin to reducing schemes to their observable 

characteristics without considering the essential component of schemes that the 

operational invariants underlying the observed regularities are. Indeed, the many 

contributions to the scheme/technique debate have made it clear that schemes and 

techniques correspond to two different and complementary ways of approaching 

instrumental issues, both insightful but irreducible to each other. (p.33) 

Still, Drijvers et al. (2013) describe techniques as gestures and consider schemes and techniques 

parts of instrumental genesis. Though acknowledging the theoretical reduction of adopting the term 

techniques, they take a practical stance:  

we see techniques as the observable part of the students’ work on solving a given type 

of tasks (i.e., a set of organized gestures) and schemes as the cognitive foundations of 

these techniques that are not directly observable, but can be inferred from the 

regularities and patterns in students’ activities. (Drijvers et al., 2013, p. 27) 

They also elaborate on techniques as carriers of both practical and theoretical knowledge, as is the 

premise of ATD. In doing so, they acknowledge the analytical need for a construct that connects 

students’ gestures, particularly those related to artifacts, to students’ cognition. This approach 

disregards theoretical reductionism and emphasizes the need to conceptualize gestural activity 

performed on the artifact within the instrumental act, which involves the hybrid entity instrument 

(artifact + scheme). This distinction is important for separating activity that only involves schemes 

from activity that incorporates the instrumental aspect. 

In papers 3, 4 and 5, I use the term technique with reference to the scheme/technique duality 

(Drijvers et al., 2013), which is an expression of the same “practical” need. To address the theoretical 

reductionism, I do, however, find it necessary to reinterpret the term technique anchored in the 

background theory of IAME, parting with IAME’s link to ATD. This requires considering the original 

work on the Instrumental Approach by Rabardel and colleagues (e.g, Rabardel, 1995/2002; 

Rabardel, 2001; Rabardel & Bourmaud, 2003) and approaching techniques through Vergnaud’s 

definition of scheme.   

In the following, I explore the terms used to describe gestural activity by Rabardel and colleagues 

and relate these to the notion of scheme as defined by Vergnaud (1998b). Rabardel (1995/2002), 

and later Rabardel and Bourmaud (2003), describe the organization of activity in the mobilization 

and implementation of schemes as usage modalities or activity modalities of an artifact. When they 

operationalize the notions in analysis, modalities are presented as steps (organization) in a series of 

specific activities related to an artifact. Each step describes the goal and decisions of the subject, and 
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the objects of the activity. Changes in the usage modalities indicate the development of schemes. 

Therefore, techniques are at least usage modalities of artifacts that require the mobilization and 

implementation of an instrument (following the definition of instrumental genesis). However, as 

Rabardel expresses it: “it is necessary to analyze and understand what these activities are from the 

perspective of the users themselves” (1995, p. 31). Indeed, from an RC perspective, understanding 

the student’s perspective in the development of schemes is of prominent concern. A more inclusive 

approach would be to consider techniques as encompassing all gestures involved in student activity 

when using a digital tool (such as hand movements during expressions, observing an artifact or 

activity on objects mediated by the artifact, or articulation of imagined activity). This allows for a 

richer description of students’ cognition than focusing solely on usage modalities. 

Rabardel (1995) and Rabardel and Bourmaud (2003) also distinguish between two types of 

utilization schemes and their related activities: usage schemes expressed through secondary 

activities aimed at managing the artifact (such as selecting specific colors or changing the number of 

displayed decimals), and instrumented action schemes, which involve primary activities oriented 

toward the execution of specific tasks. As the primary activities are those that involve mathematical 

concepts, I find it beneficial to limit techniques to primary activities. 
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In summary, I consider techniques the primary perceptual and gestural activities that involve the 

mobilization and implementation of instrumented action schemes. In summary, I consider 

techniques as the primary perceptual and gestural activities that involve the mobilization and 

implementation of instrumented action schemes. This is illustrated in Figure 8. 

2.6.2 Artifacts and tools  

In the IAME literature, a specific piece of software or device is most often referred to as the artifact, 

e.g., a CAS with functionalities. Using different functionalities then means using part of the artifact 

(Trouche, 2005). The notion tool applies when the artifact is used (Monaghan & Trouche, 2016). In 

other instances, tools and functionalities in the software are described as artifacts, forming part of a 

collection of artifacts (e.g., Drijvers et al., 2013; Leung, 2008a). 

 What exactly is the artefact in a given situation is not always clear: for example, in 

the case of dynamic geometry software, it is a matter of granularity if one considers 

Figure 8 - Illustration of instrumental genesis and instrumented action scheme placing techniques as 
a primary activity 
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the software as one single artefact, or if one sees it as a collection of artefacts (Drijvers 

et al., 2013, p. 26).  

Therefore, clarifying how I use artifacts and tools is necessary. While I do consider GeoGebra an 

artifact, it is one that structures different interrelated views (see Figure 7 and Figure 9), such as the 

graphic view and algebra view. Each view embodies and organizes different domains or subdomains 

of mathematics, each with its own syntax. I will refer to GeoGebra as a software organized in different 

views with a collection of artifacts. Artifacts become tools when used, and they become elements of 

an instrument through the process of instrumental genesis. Artifacts in DGAE create representations 

of mathematical objects, and one could argue that even the representations are tools for solving types 

of tasks. However, in this context, I will not consider representations artifacts.  An artifact can be 

described in terms of its functions. As an example of using the construct, the algebra view is used by 

typing commands into its input field. I consider each of such commands an artifact. For example, 

there is a command for creating a point, a function, a geometric object, yielding the divisors of a 

value, and so on; each is an artifact. The slider artifact that creates and controls the value of a variable 

comes along with functions such as dragging a point on the slider to change the variable’s value and 

the animation function, which automates changing the value and setting the limits of the variable. 

2.6.3 Classes of situations and a specific type of tasks 

Schemes are only relevant for a specific class of situations or specific types of tasks (Trouche, 2005). 

In this study, a type of task can be considered from the perspective of the two nodes in the 

pentahedron (see section 2.2): the mathematical activity, in this case justification, or the 

mathematical content, concerning variables in ordered pairs. I return to this in Chapter 6. The latter 

Figure 9 ‒ Left: The algebra and graphic view. Right: The menu option showing the views of GeoGebra 
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type is more typical in the literature. For example, in Trouche (2004) the type of task is to solve an 

equation with two unknowns. 

This chapter have described and discussed perspectives on theory and elaborated on the theorical 

foundation of the study. Drawing on this, the following chapter present the research questions of the 

study.  
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3 RESEARCH QUESTIONS 

The study’s theoretical and practical aim resulted in the formulation of three research questions 

(presented below) based on the previously described and discussed theoretical perspectives. Each 

research question is underpinned by specific assumptions or hypotheses, which I will present and 

argue for here. 

Because the project concerns the use of DGAE in relation to students’ exercise of mathematical RC, 

it is relevant to create situations for students to exercise their RC and learn about something 

mathematical. The mathematical topic in focus is variable as a generalized number in basic algebraic 

expressions along with basic algebraic properties such as equality, infinity, limits, and structural 

relationships (e.g., multiplicative and additive) that can be expressed when a variable is used in 

simple algebraic expressions.  

GeoGebra contains artifacts, such as the slider tool, that allow operations on variable expressions to 

be converted into changes in graphic representations that appear as (virtual) real objects. My “naïve” 

hypothesis is that GeoGebra’s dynamic multi-representation of algebraic, numeric, and graphic 

representation has the potential to support and encourage students to exercise their RC regarding 

algebraic properties and relationships by relating those representations in justification processes. 

However, for students to capitalize on those affordances, tasks must support such justification 

processes in their interaction with GeoGebra. To explore how such tasks can be designed, the first 

research question (RQ1) inquires:  

In what ways can tasks be designed to encourage lower secondary students to exercise their 

reasoning competency when using a dynamic geometry and algebra environments in the case 

of justification focusing on variables as a general number? 

To gain insight into students’ justification, in the context described above, as they work with the tasks 

developed for RQ1, the second research question (RQ2) explores:  

What are the relationships between lower secondary students’ scheme-technique duality 

when solving tasks developed for RQ1 in a dynamic geometry and algebra environment and 

their exercise of reasoning competency as justification?  

By RQ2, I assume that differences in students’ scheme-technique duality when solving the given 

tasks can be related to differences in students’ exercise of RC. Certainly, students exercise their RC 

with different complexity, which is assessed by the three dimensions: the degree of coverage, the 

radius of action, and the technical level(Niss & Højgaard, 2011, 2019). However, such an assessment 

of students’ RC alone does not shed light on their engagement with the DGAE in the justification 
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processes. Likewise, the IAME does not have notions that particularly relate to reasoning; how these 

two theoretical perspectives can be linked to capture relationships will require theoretical 

consideration and development. In RQ2, I hypothesize that IAME and RC are related. Such analysis 

might serve as the opportunity to uncover links, where each theoretical approach has methods to 

capture different aspects of students’ tools used in justification processes. (Niss & Jankvist, 2022). 

Hence the third research questions (RQ3) address: 

Which theoretical links can be established between reasoning competency and the 

Instrumental approach to mathematics education from the theoretical developments of the 

study?  

The three research questions are interconnected and mutually influential, suggesting that outcomes 

that pertain to one question may also be relevant to the others. Given the need to develop tasks 

tailored to specific scenarios and to make substantive contributions to the research field both 

empirically and theoretically, design research serves as the overarching methodological framework 

for the project. To enhance the theoretical underpinnings, the study incorporates a networking 

perspective into the theoretical discussions and reflections. 

The next chapter accounts for design research and role of theory. 
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4 EDUCATIONAL DESIGN RESEARCH 

This chapter elaborate on the methodology of the project, which is educational design research (DR). 

4.1 describe DR and its characteristics. 4.1.1 comment on theory development in DR, and finally, 

4.1.2 discuss the quality of empirical research and DR.  

4.1 EDUCATIONAL DESIGN RESEARCH 
DR is referred to by different names, including ‘design studies’, ‘didactical design research’, ‘design 

experiments’, ‘design-based research’, ‘design research’, and ‘design engineering’. DR combines 

instructional design, which develops sequences for teaching and learning in an educational setting, 

and educational research, which addresses teaching and learning processes aiming to understand 

these processes and develop theory. Instructional design and educational research are combined into 

an iterative cyclic process toward maturing both design and theory (Bakker, 2018; Cobb et al., 2003; 

Gravemeijer & Prediger, 2019; McKenney & Reeves, 2014). It is the dual aim of DR that makes this 

methodology particularly relevant for this study, as it allows for answering both RQ1 and RQ2 and 

provides a foundation for RQ3.  

 Each notion implies differences in methods, but core characteristics are:  

• aiming to develop both theory and practice through a design within realistic settings  

• designing for the development of educational theory  

• being interventionistic in nature, having both prospective and reflective components  

• being cyclic, emerging from iterative conjecturing, testing, and revising 

• developing theory that is transferrable to other contexts 

• being pragmatically rooted (Bakker, 2018; Barab & Squire, 2004; Cobb et al., 2003; 

Gravemeijer & Prediger, 2019)  

However, DR can vary in many ways, e.g., in the applicability of the practical results, the scope of the 

theoretical results, the intensity of collaboration with practitioners, the number of iterations, and the 

theoretical anchoring and theoretical approaches in the study (Bakker, 2018; Gravemeijer & 

Prediger, 2019). Particularly, the aim of a given study influences the emphasis on either theory 

development or practical implications. Studies with a practical emphasis are primarily conducted to:  

“• Solve a problem (e.g., increase the participation of women and other minorities in 

engineering and science careers), 

• Put knowledge to innovative use (e.g., use the affordances of smartphones to enable 

mobile learning), and/or 



42 
 

• Increase robustness and systematic nature of design practices (e.g., establish a set 

of design principles for implementing inquiry-based learning in middle school 

science).” (McKenney & Reeves, 2014, p. 133) 

Studies with a theoretical emphasis are primarily conducted to:  

“• Generate new knowledge (e.g., develop a theory of game-based learning), 

• Generate different types of knowledge (e.g., enhance and extend knowledge related 

to professional development for scaffolding strategies for math teachers), and/or 

• Increase the ecological validity of research-based knowledge (e.g., increase the 

likelihood that educational innovations will be used to transform educational 

practice).“ (McKenney & Reeves, 2014) 

Topic-specific studies (Gravemeijer & Prediger, 2019) will often investigate pathways through a 

given topic, which often produce hypothetical learning trajectories (Bakker, 2018). Some studies are 

explorative, as little is known, and study the phenomena and opportunities that arise in the testing 

of the design. 

The present PhD study has a theoretical emphasis because the overarching aim is to develop 

theoretical knowledge of students’ exercise of RC as they use digital environments which is addressed 

by RQ2 and RQ3. The practical results are expressed in the answer to RQ1 by “putting knowledge to 

innovative use”, as the study focus on students’ use of the algebra view but also “increase robustness 

and systematic nature of design practices” in the development of some design principles. The cycle 

of DR studies has specific phases that make up one iteration toward maturing the design and toward 

developing coherency and detail in the theoretical elements and their implications for the theoretical 

approaches in the fields. As illustrated in Figure 10, the phases are 

1) analysis and exploration toward constructing and designing  

2) testing the design to gather data in classrooms   



43 
 

3) retrospective analyses by evaluation and reflection 

Different authors “cut” or cluster these phases differently, as each phase relates to processes in the 

other phases (e.g. Bakker, 2018; diSessa & Cobb, 2004; McKenney & Reeves, 2018). The phases are 

cyclic, but each phase can be “revisited” in micro-cycles within a single iteration 

McKenney and Reeves (2018) emphasize how the researcher should take both analytic (detective) 

and creative (inventor) perspectives in all phases: “The detective is highly rational, seeking 

knowledge that is grounded in evidence from the field and supported by scientific understanding … 

By contrast, the inventor is original, striving to innovate and embracing opportunity” (p. 89). 

Initially, phase 1 entails activities such as identifying, formulating, and exploring an educational 

problem that can best be answered through DR. The analyst seeks to define and understand the 

problem by reviewing literature and receiving feedback from collaborates, and the inventor seeks 

inspiration and ideas that uncover opportunities toward a solution of the problem (McKenney & 

Reeves, 2018). In this phase, a preliminary or hypothetical theoretical lens is developed (Gravemeijer 

& Prediger, 2019), guiding the emerging of an early design and informing the formulation of 

hypothetical and humble design principles (see subsection 4.1.1). In the following iterations, these 

elements will be refined and adjusted according to phase 3. Still, the creative perspective allows for 

creativity in their application and serendipity (McKenney & Reeves, 2018). The design can concern 

materials such as computer tools, tasks, activities, or learning environments but also principles of 

how students or teachers are expected to act or communicate to obtain set goals (Bakker, 2018). 

Designing encompasses the exploration and mapping of solutions, and construction encompasses 

the creation and development of prototypes (McKenney & Reeves, 2018). Phase 1 should consider 

students’ prior knowledge and appropriate learning goals, as well as the teaching-learning strategy 

(design) that can assist students toward this goal (Bakker, 2018).  

Figure 10 ‒ Iterative phases of design research 
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The purpose of phase 2 is to obtain data that provide information to improve the envisioned design, 

allowing for testing and revising conjectures (Cobb et al., 2009). The preliminary lens frames the 

inquiry so that appropriate data is collected and follows appropriate methods. The researcher is often 

deeply involved in the execution of the intervention in collaboration with the practitioners. This both 

presents great opportunities to discover challenges and potentials of the design that can spur critical 

reflection, but also a methodological issue as the involvement influences the results (McKenney & 

Reeves, 2018). 

In phase 3, the data are analyzed, and the design is evaluated toward refining theoretical 

assumptions and design principles (Cobb et al., 2003; Prediger, 2019). It may involve exploring 

phenomena that the intervention is known to engender (McKenney & Reeves, 2018). Collins et al. 

(2004) argue, “it is important to identify the critical elements of the design and how they fit together. 

In order to evaluate any implementation, one needs to analyze each particular case in terms of these 

key elements and their interactions” (p. 34). This may involve considering the success of both the 

implementation and its results (Bakker, 2018). Ejersbo et al. (2008) remark that ideally, the 

development of design and the development of theory run simultaneously, but that this ideal can be 

difficult to practice. Typically conjectures evolve during and after teaching experiments, leading to 

loops between designing and conjecturing (Confrey & Lachance, 2000). 

4.1.1 Theory in design research 

Different types of theory elements have different functions in DR, and some are developed in turn 

during a DR study. 

Categorial theory elements provide a language with logically structured descriptive concepts and 

are used to understand and distinguish phenomena and relations (Prediger, 2019). They have 

functions similar to a background theory (subsection 2.1.2) as it “is decisive for all further theory 

elements, as they provide the language to describe, set aims, and explain or predict in propositional 

theory elements” (Prediger, 2019, p. 9). In the present study, the theoretical framework described in 

Chapter 3, the KOM framework along with the IAME, has elements that provide such language, e.g., 

that mathematical mastery is understood in terms of mathematical competence, constituting a set 

of logically structured descriptive concepts, and that tool use is a genesis of human and artifact.  

This also reflects in the normative theory elements, which state and justify aims and principles such 

as learning goals or process qualities within a given context and elaborate on their foundations 

(Prediger, 2019). In this PhD project, the normative element provided by the KOM framework is 

anchored in the proposition that mathematical mastery is understood as mathematical competency 

(Niss & Højgaard, 2019; Niss & Jankvist, 2022) and expressed in the goal of students to exercise 
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their RC. Other normative elements have also been included to provide an informed foundation for 

the design and construction of tasks. These elements are explained in Chapter 6. 

Descriptive theory elements serve to describe the quality and occurrence of certain phenomena and 

relationships. These can be features, hierarchies and frequencies of different categories. Identifying 

and refining descriptions of phenomena is a typical step in DR (Prediger, 2019).  

Explanatory theory elements explain certain phenomena by pointing to cause and effect between 

phenomena or structures. Categorical and descriptive components are needed to develop 

explanatory elements, though in empirical research they are often co-developed (Prediger, 2019). If 

a relationship between descriptive elements can be derived, it increases the explanatory power.  

Predictive theory elements justify certain solutions/actions toward a given aim or problem, or they 

predict outcomes of action, design elements, or structural elements. In DR, predictive theory 

elements are traditionally developed as design principles. Van den Akker (1999) propose that design 

principles follow this structure:   

If you want to design intervention X [for the purpose/function Y in context Z], then 

you are best advised to give that intervention the characteristics A, B, and C […], and 

to do that via procedures K, L, and M […], because of arguments P, Q, and R. (p. 9)  

Akker’s formulation combines the how and why underpinning the dual aim of DR. The arguments 

in support of the design characteristics and procedures can both be empirical and theoretical 

(Bakker, 2018).  

To emphasize the hypothetical nature of early design principles, I label them humble design 

heuristics (HDH), following Prediger (2019). The developing theoretical lens guides the early HDH 

hypotheses, which are developed into principles as they mature in the retrospective analysis of phase 

3.   The design principles are continuously revisited throughout the kappa, to explicate how different 

processes have provided new insights to progress the principles.  

4.1.2 Quality in research and design research 

Schoenfeld (2007) has established quality criteria for validity and reliability within empirical 

research, which also extend to DR (e.g., Højsted, 2021; Jankvist, 2009). I will discuss these criteria 

regarding the project in the final discussion. Schoenfeld (2007) argues that research must be 

examined based on three dimensions: credibility, generalizability, and importance. Ensuring quality 

in DR involves such key aspects, including trustworthiness, descriptive and explanatory power, and 

the generalizability and transferability of results. This section explores these dimensions to provide 

a comprehensive understanding of quality in DR. 
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In DR, trustworthiness includes both validity and reliability. Bakker and van Eerde (2015) 

underscore the significance of internal and external validity in establishing the credibility of research 

findings. Internal validity aligns with Schoenfeld (2007) descriptions and pertains to the quality of 

the data and the soundness of the reasoning leading to conclusions. To fortify internal validity, 

researchers often employ data triangulation in retrospective analysis, incorporating diverse data 

sources such as transcripts, videos, screencasts, and written products. This multiplicity of data 

sources allows for a robust examination of the research findings. 

Reliability in DR can be challenging due to the complexity of naturalistic settings where 

interventions are implemented (Collins et al., 2004). The numerous dependent and independent 

variables in such environments can affect the consistency of results. Despite these challenges, 

maintaining rigorous methodological standards and ensuring transparency in data collection and 

analysis processes can bolster reliability. Schoenfeld (2007) notes that findings with less internal 

validity may only serve as proof of existence, underscoring the need for stringent validity checks in 

DR studies. 

Documentation and description of the DR processes ensure rigor, specificity, and replicability. 

Schoenfeld (2007) adds that the description should concern only essential aspects. Descriptive and 

explanatory power in DR refers to how well the research can describe and explain phenomena within 

the study context (Prediger, 2019). Predictive power in DR involves the ability to forecast outcomes 

based on the design principles developed during the research. These principles, while predictive, 

require rigorous testing and validation to ensure their applicability across different contexts. 

Schoenfeld (2007) asserts that theoretical claims need to be testable and refutable, enhancing their 

potential for refinement and validation. 

Generalizability in DR pertains to the extent to which research findings can be applied beyond the 

original study context. Schoenfeld (2007) outlines four types of generalizability: claimed, implied, 

potential, and warranted. Claimed generalizability is the set of conditions explicitly stated by the 

researchers as applicable, while implied generalizability is suggested indirectly. Potential 

generalizability refers to contexts where the findings might reasonably apply and warranted 

generalizability is substantiated by trustworthy evidence. In the context of DR, generality is thought 

of as the transferability of results (Bakker, 2018). These theory elements include categorical, 

normative, descriptive, explanatory, and predictive elements, each serving different functions within 

the research framework (Prediger, 2019). Schoenfeld (2007) emphasizes the importance of the 

relevance and significance of research results for both theory and practice. The importance of the 

results, therefore, lies in their ability to advance the field and inform future research and practice in 

mathematics education.  
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5 OVERVIEW OF THE EXECUTION OF THE STUDY 

This chapter provides context for answering the research questions (1‒3). 5.1. present an overview 

of the phases of the study, and position the study in the landscape of DR.  5.2 account for the data 

collection. 5.3 summarize the papers included in the kappa.  

5.1 EXECUTION OF THE STUDY 
The project has followed the iterative structure of DR (see chapter 4), emphasizing linking KOM with 

IAME. As Figure 11 illustrates, the retrospective analysis of the DR serves as a foundation for the 

networking of the two frameworks KOM and IAME, which again influence the redesign and 

construction of tasks. The development of the task design is described concretely and thoroughly in 

Chapter 6.  
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Iteration 1: Based on an initial 

literature review, the 

preparation phase explored 

possibilities for students to use 

artifacts of the algebra view for 

justification through classroom 

experiments of seven 

explorative tasks. Networking 

efforts explored mediation 

processes as expressions of RC 

but pointed to “missing links” 

between KOM and IAME. 

Iteration 2:  

The design and preparation 

phase led to the emergence of 

a “microworld” designed 

around the idea of “variable 

points” and the construction of 

a sequence of tasks. The 

retrospective analysis 

identified tasks with 

possibilities for students 

exercise of. Networking efforts 

to link KOM and IAME 

produced an analytical model 

of student justification 

processes using GeoGebra. 

Iteration 3:  

The task sequence was 

redesigned and tested, leading 

to potential developments in 

task design. Common 

difficulties among students 

exercising RC and using 

algebra were revealed. 

Networking efforts deepened 

connections to Vergnaud’s 

scheme concepts and 

considered three dimensions 

of RC relations..  

 

 

5.1.1 Characterizing the study within design research 

The processes of a DR study are highly influenced by the aim of the study and its emphasis on the 

practical or theoretical perspective. As already indicated, this project emphasizes the theoretical 

Figure 11 ‒ Illustration of the research process as an interaction between DR and NT 
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perspective. This does not mean that the practical perspective is devaluated; Indeed, the theoretical 

developments obtained in the study rely on the quality of the empirical evidence.  

The theoretical aim of this study is to enhance and extend the knowledge of students’ RC and use of 

digital tools. This aim also emphasizes why networking of theories are relevant. As the KOM 

framework is a medium-level framework (this is argued in section 6.5), it does not capture the fine-

grained processes of interplay between DGAE and students’ reasoning processes. To gain insight into 

this interplay, the theory development must therefore consider the KOM framework and draw on 

the theories of MER with methods and concepts to describe the fine-grained processes. The 

theoretical development is hence anchored in a practical perspective. 

Often a DR study is topic-specific (Gravemeijer & Prediger, 2019). However, it is not the case for this 

study, as it does not aim to teach students specific mathematical content by creating optimal 

pathways, such as learning trajectories. Rather the aim is to achieve insight for theory development 

in cases where students exercise their RC while they use a DGAE. For students to exercise any 

competency, they must be given a mathematical situation that concern something mathematical. 

Moreover, this must be chosen with particular care toward the target group. Consequently, the 

practical perspective is to encourage students to exercise their RC with artifacts in GeoGebra’s 

algebra view by considering how to capitalize on the affordances of GeoGebra’s algebra view. In 

addition, to increase the robustness and systematic nature of the design in terms of design principles 

(Van den Akker, 1999) to be able to develop different types of knowledge, e.g., descriptive, 

explanatory, and predictive theory elements (Prediger, 2019). 

5.2 CLASSROOM EXPERIMENTS AND DATA COLLECTION  
Table 1 shows an overview of classroom experiments and the data collection. The two participating 

schools A and B are public schools. School A is located in a suburb of Copenhagen, and school B is 

in a suburb of Aarhus. The classroom experiments were primarily conducted in the 7th grade. In the 

pilot of iteration 1, two PhD fellows also participated. Note also that iteration 3 diverges in its 

organization due to covid-related issues and includes an 8th grade. I will account for those in this 

section too. 

The classroom experiments were conducted in collaboration with the mathematics teachers of the 

participating classes, who also assisted with obtaining consent for student participation and 

informing parents. Before the classroom experiments, I met with the mathematics teacher of the 

given class to organize the sessions and adjust the tasks. This meeting also prepared both the teacher 

and myself for guiding and supporting the students, e.g., discussing how to give hints without 

providing answers and how to support students in clearly accounting for their thinking and 
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justifications. After each classroom experiment session, I also met with the teachers to evaluate and, 

if necessary, make minor adjustments before the following test. These were primarily specific 

formulations that diverted from the discourse of the given mathematics classroom.  

In the experiment, the students worked together in pairs with one laptop or Chromebook to make 

students voice their thoughts and arguments and to experience a need to justify their solutions or 

solutions strategies to a peer. The student’s work was documented with video and audio recording 

software using OBS studio on laptops and WeVideo on Chromebooks, capturing the computer 

screen, voices, and the students’ upper bodies. In addition, in collaboration with the teachers, two 

focus pairs from each class were selected to be recorded by a stationary camera capturing the 

computer screen and their hand gestures in front of it.   

The students accessed the GeoGebra worksheets for given tasks through GeoGebra groups (now 

being replaced by GeoGebra classroom). This allowed me to access the final state of the student’s 

work in the GeoGebra group. In class a, the tasks were also posed along with an input field for written 

answers. In the remainder experiments the tasks were given in Microsoft Word documents for the 

and only the GeoGebra worksheets were accessed through GeoGebra groups. 
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Table 1 ‒ Overview of data collection 

 Grade When Where Duration Classes and 

(students) 

Teachers 

 

It
er

at
io

n 
1 7th grade August 2019 School A 

 

2 lessons of 

45 minutes 

Class c (23) Teacher 2 

PhD 

students 

September 

2019 

Aarhus 

University 

1 hour (2) none 

 

It
er

at
io

n 
2 7th grade October/ 

November 

2019 

School A 

 

2 x 2 lessons 

of 45 minutes 

Class a, (21/5) 

Class b (17) 

Class c (23)   

Teacher 1 

Teacher 1 

Teacher 2 

 

It
er

at
io

n 
3 

7th grade 

 

June 2021 

 

School B 

 

2 lessons of 

45 minutes 

Class x (4) None  

2 x 2 lessons 

of 45 minutes 

Class y (25) Teacher 3 + 

Substitute 

2 lessons of 

45 minutes 

Class x (4) none 

8th grade June 2021 School A 2 lessons of 

45 minutes 

Class c (23) Teacher 2 

 

In iteration 1, seven tasks were tested in one classroom, which also tested the screencast software 

and the setup of video cameras. Some tasks showing promise of further development in the 

classroom experiments were also tested on two PhD peers to get a reference in the form of expert 

answers to the tasks. I took on the role of an interviewer as they solved the tasks.  

In iteration 2, not all students agreed to be video recorded. This was particularly an issue in class A, 

where only five students agreed to be recorded. This resulted in two focus groups and one group that 

did not record their face and upper body, but only screen and voices. However, all students in the 

class worked with the tasks, and the teachers and I discussed our impressions of watching and talking 

with the students, as they solved the tasks, in our evaluation of the sessions. Practically, this means 

that results from class A were used as a pilot.  

Iteration 3 was, to some extent, influenced by covid restrictions. Once the students were fully back 

in school and schools were open to visitors, the summer holiday was approaching. The experiments 

had to be adjusted to what was possible before the holiday and the restrictions still enforced. School 

B had two 7th grade classes, Y and X. Two focus pairs from class X were used as a pilot to decide on 

particular developments of the task and test the recording software WeVideo. Class Y was to try the 
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full task sequence. The mathematics teacher of class Y was put in isolation throughout the period of 

the classroom experiments due to a positive covid test, and a substitute participated in class. 

Consequently, the students had less support with technical issues related to recording, the use of 

GeoGebra, and task completion. This affected the quality of the collected data, so I organized a focus 

group session with two pairs of students from class X. I also engaged class C from school A (now in 

8th grade) to solve the developed task sequence. Their mathematics teacher conducted this 

experiment after careful instruction from me.  

5.2.1 Publications related to the study 

The writing of review papers has been ongoing since in the early stages of the study and has 

continually developed and shaped the study throughout all three iterations. Besides the papers 

presented in the kappa, other conference papers and publications have been produced; some in 

collaboration with colleagues.  Table 3 presents an overview of how these productions fall within the 

three iterations.  

Table 2 - Overview of publications associated with each cycle 

 Focus  Publication 

Review 

studies  

Providing groundwork for existing knowledge on the 

use of tools in the algebra window of GeoGebra for 

reasoning processes, networking of theories, and 

representation competency. The reviews have been 

initiated in iteration 1 but have been ongoing until 

publication. 

Pedersen et al. (2021) 

Paper 6: Bach et al. (2021) 

Paper 1: Gregersen (2022) 

 

Iteration 1  Exploring mediation processes Gregersen (2020)  

Iteration 2 Exploring IAME toward capturing justification 

processes and other potential frameworks for 

reasoning. This leads to the development of an 

analytical model to capture justification processes in 

students’ use of a DGEA, also exploring the potentials 

of the algebra view and a definition of instrumented 

justification. 

Paper 2: Gregersen and 

Baccaglini-Frank (2020)  

Paper 3: Gregersen and 

Baccaglini-Frank (2022) 

Iteration 3 Evaluation of the developments implemented in the 

tasks sequence by comparing students’ exercise of RC 

and evaluation of specific types of tasks and their 

potentials related to using the algebra view. Also, liking 

IAME to KOM through students’ use of techniques in 

their instrumented justification  

Paper 4: Gregersen (In review) 

Paper 5: Gregersen (2024) 
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5.3 SYNTHESIS AND RESULTS FROM PAPERS IN THE KAPPA 
In this section, I summarize the papers of the kappa and describe how they relate to and build on 

one another.  

5.3.1 Paper 1 - How about that algebra view in GeoGebra? A review on how task design 

may support algebraic reasoning in lower secondary school 

This review paper investigates the potential of GeoGebra’s algebra view for task design concerning 

lower secondary school students’ RC when working with variables as a generalized number. Despite 

an extensive search in the existing literature, only five conference papers on this topic were found, 

indicating a lack of research in this area. The research on the use of DGE in mathematics teaching 

and learning has mostly focused on Euclidean geometry and simple and complex functions. 

The paper discusses three empirical studies and two theoretical papers that explore either the explicit 

or implicit use of variables. The results suggest that GeoGebra’s integration of geometry and algebra 

can pose didactical issues. The analytical algebra in the algebra view lies beyond the scope of lower 

secondary school mathematics (ages 13‒15), and the construction of geometrical objects in the 

graphic view, which produces implicit variables, can result in discrepancies in the representations in 

GeoGebra (Jackiw, 2010; Mackrell, 2011). 

However, with the explicit use of variables (Soldano & Arzarello, 2017; Tanguay et al., 2013) and by 

providing students with the possibility to transform algebraic expressions (Lagrange & Psycharis, 

2011), it is possible to direct students’ reasoning toward algebraic expressions. In this context, the 

use of sliders can validate or refute conjectures about the relations between numeric values and 

geometric relationships (Soldano & Arzarello, 2017; Tanguay et al., 2013). The slider tool provides a 

link between graphic representations, algebraic representations, and numeric values, allowing for a 

more comprehensive understanding of mathematical concepts (Mackrell, 2011). 

The paper concludes that, while there is little research on functionalities in GeoGebra’s algebra view 

for working with variables as a general number, using sliders for explicit variables can activate lower 

secondary students’ mathematical RC. Further exploration of typing expressions with variables in 

the context of GeoGebra is also recommended. 

5.3.2 Collective introduction of papers 2, 3, 4 and 5 

Together, papers 2, 3, and 5 demonstrate the evolution of theoretical developments aimed at 

bridging the gap between the KOM framework and IAME to capture students’ justification processes 

when utilizing tools, while paper 4 focuses on task design for RC. They all rest on the results of the 

review, and with different perspectives, they add to our understanding of students’ use of artifacts in 
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the algebra view in the context of reasoning about variables as a generalized number and properties 

of the variable.  

In paper 2, a conference paper, the initial attempt to connect the two frameworks is introduced by 

interpreting the scheme-technique duality (Drijvers et al., 2013) through elements of Toulmin’s 

(2003) model, resulting in the creation of the first proposal of an analytical tool. This tool is further 

elaborated with regard to the concept of justificational mediation (Misfeldt & Jankvist, 2019), a 

distinct type of mediation in reasoning processes. However, the intricate process that emerges from 

the analytical tool, governed by the goal of changing the epistemic value of claims, leads to the 

abandonment of the notion. In paper 3, the analytical tool is further refined and used to define 

instrumented justification to describe the process of students’ justification processes when using an 

artifact. The analysis concerns a case where a pair of students solve a task designed within the study, 

the “equal points” task. Some of the findings concern the potentials and challenges of the task. These 

are further addressed in paper 4, which also describes how the task is further developed. Paper 4 

draw on the definition of instrumented justification processes, but the analytical focus evolves 

around the goal of student tool use, and the potentials and challenges of the “equal points” task for 

students’ exercise of RC. In paper 5, the analytical tool is again utilized for analysis, accentuating the 

scheme of the scheme-technique duality through the analysis of the scheme’s components 

(Vergnaud, 1998b), elaborating on how students’ conceptual knowledge are an integrated 

component of their instrumented justification processes.  

5.3.3 Paper 2 - Developing an analytical tool of the processes of justificational 

mediation 

Paper 2 explores justificational mediation (JM) in the justification processes of a pair of early 

secondary students using GeoGebra. JM is introduced in the context of computer algebra system 

(CAS) assisted proofs in textbooks (Misfeldt & Jankvist, 2019). This paper, however, approaches JM 

in the context of justification processes. The paper aims to expand the understanding of JM by 

combining Toulmin’s (2003) model with the Instrumental Approach (IA) (Rabardel & Bourmaud, 

2003) to analyze the process. It emphasizes that JM has the objective of changing the status of a 

mathematical claim, e.g., from being probable or likely to being perceived as true or false. 

The paper proposes reinterpreting Toulmin’s model based on the generative and epistemic aspects 

of schemes (Vergnaud, 2009), a framework for analyzing arguments, to unravel the processes 

surrounding JM. Using Toulmin’s (2003) model amplifies the importance of the qualifier as an 

indication of the change in the status of a claim, and thus serves as a structure for analyzing JM. 

The reinterpreted model of Toulmin is operationalized in the analysis of the justification processes 

of two 7th grade students, assigned with a task in which they had to predict the movement of two 
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variable points, A = (1,s) and B = (s,1), in GeoGebra’s coordinate plane. The examination of the 

students’ informal argumentation, within the digital environment of GeoGebra, dissect the structural 

components of the JM process in the identification of key structural elements. Specifically, the 

students generate data as evidence and facts that support their mathematical claims. Moreover, the 

analysis highlights the critical role of warrants in the students’ argumentation, pointing to the 

inference rules utilized by the students to establish a connection between the generated data and the 

initial claim. 

5.3.4 Paper 3 – Lower Secondary Students’ RC in a Digital Environment: The Case of 

Instrumented Justification 

The paper addresses the aspect of justification concerning students’ RC within the broader context 

of the KOM framework, and its implications in a dynamic geometry environment, as processes of 

instrumented justification. The study highlights the significance of GeoGebra’s algebra view in 

providing symbolic representations alongside graphic representations. However, the potential of 

dynamic geometry and algebra environments for lower secondary school students remains relatively 

unexplored. Building on paper 2, the paper presents a revised analytical tool, reinterpreting elements 

of Toulmin’s (2003) model from the perspective of IAME’s scheme-technique duality. The aim is to 

provide insights into the relationship between students’ use of a digital environment and their 

justification processes, shedding light on their RC.  

The tool is utilized in analyzing excerpts from two students’ efforts at solving a task, where the 

algebra view’s input field is used to construct and transform variable points controlled by a slider. 

The task given is the “equal points” task concerning the preconstructed points A = (1, s) and B = (s,1). 

Students are asked to construct a point C, dependent on s, so that C and A move on parallel 

trajectories. Then they are asked: “Can C = B? If so, when?”. 

Excerpts of the students’ justification sub-processes are analyzed, and it is described how the 

students argued for two opposing claims. The changes in the qualifiers of these claims were analyzed 

across three justification sub-processes, providing a detailed examination of the instrumented 

techniques, data, and warrants that the students used to generate and interpret evidence for their 

claims. The students’ use of certain techniques, such as editing the coordinates of points and 

observing animations, provided insights into their interpretation of data as evidence for their claims, 

and the warrants they relied on during the justification process. 

The use of animations, perceptions of point movement, and the distinction between “colliding 

points” and “intersecting lines” are also discussed. The discussion relate to the student’s 

interpretation of data as evidence and their gradual recognition of key mathematical concepts toward 

their evolving understanding of properties and structures inherent in the variable points. The use of 
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phenomenological warrants, such as “the speed of animated points influences when points can be 

equal” and “the positions and movements of a point are influenced by changing the coefficient of the 

variable in the coordinate set”, were significant in the students’ justification process. The task caused 

tension between students’ interpretations of variables as a general number and the need for a 

generalized conception, particularly in understanding the dynamism and temporality of 

mathematical objects. 

The findings lead to the proposal of a definition of instrumented justification processes:  

Instrumented justification is a process through which a student modifies the qualifier of one (or 

more related) claim(s) using techniques in a digital environment to generate and search for data 

and warrants constituting evidence for such claim(s). The theoretical tool for analyzing the IJ 

processes in DGAE’s like GeoGebra contributes to strengthening the knowledge of students’ RC in a 

digital environment, shedding light on the intricate relationship between students’ use of digital tools 

and their justification processes.  

5.3.5 Paper 4 - Lower secondary students’ exercise of RC: Potentials and challenges 

of GeoGebra’s algebra view 

Paper 4 dives deeper into the challenges, outlined in paper 3, concerning the “equal points” task. It 

explores the challenges and potentials of the task for students’ exercise of RC and explains the 

development and rationale behind its revisions.  

The task revision addresses several issues. Firstly, inherent in the task was a prerequisite of viewing 

variable points as a set of points that can be changed, hindering students’ engagement. Secondly, 

while slider animation offered phenomenological impressions of movement speed, students 

required guidance to utilize this functionality. Thirdly, the trace functionality in conjunction with 

changing the coefficient had the potential for phenomenological impressions in terms of the length 

of the trajectory. In addition the intersections of traces indicate the coordinate position when points 

are equal. Fourthly, students needed assistance in manipulating expressions with variables in 

coordinates. Finally, tasks involving parallel moving points diverted students from geometric 

property justifications. 

The revised task provides context for examining the potentials and challenges for lower secondary 

students’ exercise of RC toward justifying algebraic properties of variable points. Based on two 

different class experiments, students’ argumentations are compared between the first and the 

revised tasks. The students’ work is analyzed from the perspective of KOM (Niss & Højgaard, 2019), 

and students’ tool use of GeoGebra’s algebra view is analyzed from the standpoint of the IAME 

(Artigue & Trouche, 2021; Drijvers et al., 2013).  
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The findings show that the integration of graphic and algebraic representations through sliders in 

GeoGebra’s algebra view holds potential for enhancing students’ RC. However, few students 

successfully related observations from the graphic view to algebraic expressions. Some based their 

justifications on phenomenological impressions, serving as initial steps of reasoning within the 

algebraic domain. However, students’ struggles to grasp core concepts hindered progress, amplifying 

the complexity introduced by the algebraic view. Some students who struggle with instrumentalizing 

relevant techniques in the algebra view may relate to their symbol and formalism competency. Paired 

with a lack of instrumentation of the graphic view, such students are generally challenged in their 

exercise of RC. 

Finally, the problem-solving strategy that most students implemented was to pick a technique and 

stick to it. This reluctance to explore other techniques was a challenge for students’ 

instrumentalization of other techniques in the algebra view for both problem-solving and 

justification.  

5.3.6 Paper 5 - Analysing Instrumented Justification: Unveiling Student’s Tool Use 

and Conceptual Understanding in the Prediction and Justification of Dynamic 

Behaviours 

This paper builds on the theoretical framing of papers 2 and 3. Within the context of predicting 

dynamic behaviors of variable points, paper 5 aims to understand the interplay between students’ 

RC, use of DGAE, and their conceptual knowledge.  

A pair of students’ prediction and justification of the dynamic behavior of variable points A = (1, s) 

and B = (s, 1) in GeoGebra are subjected to analysis, applying the analytical tool for IJ developed in 

paper 2 and 3. Their process is further analyzed with respect to the conceptual aspects of the scheme-

technique duality from IAME (Artigue & Trouche, 2021; Drijvers et al., 2013; Trouche, 2003) in IJ 

processes. This is done by considering the components of scheme as defined by Vergnaud (1998b), 

which concern students’ personal theorems about concepts, their rules-of-action, and the 

possibilities for inference toward obtaining goals.  

The analysis explores the interplay between data production, interpretation, and progression in 

terms of techniques. The analysis of warrants provides insights into the progression of students’ 

conceptual understanding as a result of inferences between theorems about concepts, which co-

evolve with the progression of techniques. In addition, the progression of instrumental genesis is 

driven by students experiencing the inefficiency of both rules-of-action and the constraints of the 

artifact, pertaining to the goal of changing the epistemic status of a claim, ultimately advancing their 

instrumental genesis. The findings suggest that predicting dynamic behavior can enhance 
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knowledge-based justification, and the progression of technique is driven by students’ experience of 

the inefficiency of techniques and artifacts related to the goal of justification. 

The paper also highlights the value of the prediction task, particularly in revealing properties of the 

variable and challenging students’ phenomenological impressions of dynamic behavior. The results 

emphasize the potential for such tasks to develop a structural conception of the variable and 

challenge students to move toward theoretically grounded justification. Additionally, the paper 

provides insights into the progression of students’ conceptual understanding and tool use in the 

context of mathematical RC, instrumental genesis, and inferences drawn between theorems-in-

action. 

5.3.7 Paper 6 - On the notion of “background and foreground” in networking of 

theories 

Paper 6 stands out from the rest as it relates specifically to the perspective of networking of theories. 

The paper is a product of the literature review of the co-authors and me. This review was made to 

identify and understand the research practices and notions of networking of theories. The notion 

introduced in this paper will be used in chapter 8.  

The paper explores the crucial concept of ‘background and foreground’ theories, which play a pivotal 

role in the networking of theories within the context of mathematics education research. Through a 

hermeneutic literature review, we analyze how the notions of foreground and background theories 

are utilized in the literature on networking theories. We support our analysis with two cases that 

illustrate the relative and absolute distinctions of these terms, providing concrete examples for our 

discussion. The absolute perspective considers foreground and background theories distinct and 

fixed categories, as theories that stem from inside or outside mathematics education research, with 

clear delineations between them. In contrast, the relative perspective views foreground and 

background theories as more fluid and context-dependent, allowing for their roles to vary depending 

on the specific research context or situation. The study highlights the coexistence of both relative 

and absolute distinctions in the literature and discusses the implications of each perspective. While 

the relative distinction can cause unnecessary confusion in terminology, it also offers a nuanced 

understanding. Based on these findings, we propose a novel concept, ‘framing theories’, which we 

believe can effectively address the nuances of background theories within and outside mathematics 

education research. 
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6 THE DESIGN AND CONSTRUCTION OF TASKS 

In this chapter, I address RQ1: 

 In what ways can tasks be designed to encourage lower secondary students to 

exercise their reasoning competency when using a dynamic geometry and algebra 

environments in the case of justification focusing on variables as a general number? 

This chapter emphasizes the study’s design process. It contributes design principles that are justified 

through theoretical perspectives used in the design and construction of tasks and the retrospective 

analyses of each iteration. I first introduce and provide rationales for the HDH (Prediger, 2019) and 

their development into design principles (Bakker, 2018). The design of learning environments and 

the construction of tasks require both an analytical and a design perspective (McKenney & Reeves, 

2018). In section 6.1, I describe the analytical perspective that underpins the complete design 

process. As I first present the analytical perspective, it may appear to be a priori analysis. In reality, 

the analytical perspective has formed alongside design processes and classroom experiments but is 

described and argued for in separate sections to convey a clear picture. The theoretical development 

that intertwined with the design processes is described and discussed in Chapters 7 and 8.  

Following, I report on the design processes throughout the three iterations by describing impactful 

strides of the design and task construction processes and the development of design principles. 

Section 6.2 explicates the initial explorative design process in iteration 1. Based on the explorative 

processes, a microworld of variable points and related tasks is developed in iteration 2, which is 

described in section 6.3. Progression in iteration 3 is elaborated in section 6.4. In each iteration, the 

retrospective analyses summarize and report on results and observations that have materialized in 

the development of specific tasks. I do not present a complete picture of the retrospective analysis 

and the affiliated design processes, as this is beyond the limits of the thesis. The intent is to outline 

analysis and observations that give context to the included papers.  

Finally, in section 6.5, a comprehensive discussion of the educational design processes is presented. 

This includes a detailed exploration of the design principles that have evolved from the initial HDH, 

providing a comprehensive understanding of the theoretical and practical aspects of the design 

process.  

6.1 THE ANALYTICAL PERSPECTIVE - FOUNDATIONS FOR DESIGN 
The analytical perspective considers different normative theory elements in the design process that 

elaborate and justify aims and principles (Prediger, 2019). First, I discuss designing tasks for RC and 
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justification, then designing for using tools and representational issues of GeoGebra concerning 

variables as a general number, and finally, the content concerning the age group of lower secondary 

students. HDHs are formulated from the analytical perspective and revisited from the design 

perspective.   

6.1.1 Designing for students’ exercise of RC  

Designing for students exercise of RC involves the construction of mathematical problems that allow 

students to produce and justify claims and solutions when using GeoGebra.  

In reasoning, students often struggle to identify the relevant concepts and properties of a problem 

(Duval, 2007); Lithner (2008) adds that this can be related to students anchoring their reasoning on 

surface properties instead of the intrinsic properties of a given problem. He gives the following 

example: “In deciding if 9/15 or 2/3 is larger, the size of the numbers (9, 15, 2, 3) is a surface property 

that is insufficient to consider while the quotient captures the intrinsic property” (Lithner, 2008, p. 

261). On the one hand, for students to be able to anchor their arguments in intrinsic properties, they 

must at least be aware of them and know when they are relevant to, in the words of KOM, be 

insightful and respond appropriately to the challenge (Niss & Højgaard, 2019). The design and the 

problems must therefore be based on the student’s existing knowledge and competency. On the other 

hand, the problems should not be trivial, as students can just apply well-known routinized 

techniques or algorithms already considered trustworthy (Lithner, 2008). Familiarity with a 

mathematical task can cause the students to not justify their claims and solutions, as the need for 

validation diminishes. This observation aligns with the description of mathematical problems within 

the KOM framework, where a mathematical problem can only be considered as such if it poses a 

challenge to the individual attempting to solve it. This rationale forms the following HDH:  

A: The intrinsic properties of a posed problem must be familiar to the students, but the type of 

problem posed should be novel to students (based on Duval, 2007; Lithner, 2008; Niss & Højgaard, 

2019). 

This also implies that some progression within tasks and content is necessary so that students keep 

a sense of novelty. 

The second HDH is inspired by the work of White and Gunstone (1992), who proposed the task 

structure “prediction-observation-explanation”. This structure involves students making predictions 

about the outcome of an event, justifying their predictions, and subsequently testing their 

predictions through observation. White and Gunstone suggested this structure for teaching and 

learning in the natural sciences, but it has also been successfully adapted for task design in 

mathematics education. Research on prediction tasks in mathematics education has demonstrated 
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that requesting students to predict outcomes can encourage them to engage in mathematical 

reasoning based on their conceptual knowledge (Kasmer & Kim, 2011; Lim et al., 2010). I emphasize 

the justification of the prediction and refer to White and Gunstone’s task structure as “justified 

prediction-observation-explanation”. The task structure is particularly relevant in digital 

environments, where the instant feedback allows students to test mathematical conjectures and 

claims empirically, akin to experiments in natural science, where the observed may confirm or refute 

a prediction or need further explanation. Researchers such as Olsson (2017) and Højsted (2021) have 

applied this structure particularly to GeoGebra, embedding it within a digital environment. In the 

case of using commands in the algebra view, the justified predictions concern the translation 

between algebraic and graphical representations and the dynamic behavior of the constructed 

objects. This rationale forms the HDH: 

B: “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support 

students in forming claims and engage in justification processes about algebraic relationships and 

concepts based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010). 

6.1.2 Designing for the use of digital tools  

The IAME determined that learning to use a tool is a lengthy process specific to certain situations. 

This is why even experienced users can face challenges when confronted with a new problem. It is 

essential to consider this aspect when designing tasks that involve digital tools. When introducing 

students to a new tool, such as functionalities of the algebra view, it is essential to guide them through 

the process of learning how to use it. Some challenges can be related to variations in syntax across 

different regions or languages. For example, in Danish a comma is used instead of a dot for decimals. 

The students will have to have to be reminded of this. Some tools, like a slider, may be completely 

unfamiliar to students, and some guidance on its use is needed for particularities. For example, in 

addition to pulling the slider, which many students do intuitively, the value of the variable can also 

be altered by clicking and typing in a specific value. This can be useful if students want to test a 

specific value.  

In the literature review (paper 1), I found a scarcity of examples or discussions of students’ use of the 

tools in GeoGebra’s algebra view or of papers discussing GeoGebra’s algebra view concerning 

students’ reasoning, with respect to variables as general numbers within the age group. Only five 

conference papers were included: 

The five identified studies are all peer-reviewed but cannot be perceived as the same 

quality as a journal paper. This indicates that the research on the potentials of 

GeoGebra’s Algebra View and its functionalities for mathematical tasks and processes 

other than functions is still developing. Two of the papers are theoretical, while three 
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present empirical results. Four of the five studies make use of GeoGebra, and one 

study by Lagrange and Psycharis (2011) makes use of a programming “turtle world” 

software, LOGO, which has very similar affordances to that of the Algebra View in 

GeoGebra. The software uses a programming language, whereas the Algebra View in 

GeoGebra uses standard algebra notations and commands specific to the program. 

(Gregersen, 2022, p. 4)  

A literature review by Yohannes and Chen (2021) on GeoGebra in MER draws a similar picture. They 

find that very few studies concerning this age group have been published in journals, and those 

identified focused on geometry, while other mathematical domains concern higher educational 

levels: 

 The result of this study indicated that, among all of the studies, Geometry accounted 

for the highest number, with a total of 11, followed by analysis (n = 9) and Discrete 

Mathematics/ Algebra (n = 5); there were no papers in applied mathematics and 

general/ foundational mathematics. It can be realized from this finding that the 

content domains of mathematics education were mainly senior secondary school 

mathematics and higher education mathematics (Yohannes & Chen, 2021, p. 7). 

Consequently, in the study’s first DR iteration, the design and construction of tasks were 

predominantly influenced by the creative perspective to discover affordances of the algebra view with 

educational value toward students exercising RC concerning variable as a generalized number. In 

the following, I discuss the representational infrastructure of GeoGebra, in this case with regards to 

students’ use of sliders and algebraic expressions in the algebra view. A dominant issue with the 

representational structures of GeoGebra is that the complexity and amount of information may 

hinder students’ exercise of RC, as they do not have the conceptual knowledge to understand the 

representational system. In many cases, the algebra view contains symbols referring to mathematics 

unknown to students in lower secondary education and a vast amount of information for the student 

to manage, even in a quite simple construction. This is exemplified in Figure 12 where a dynamic 

circle with a line representing its radius is constructed in GeoGebra. The construction in the algebra 

view comprises five entries, each representing an object in the graphic view. One entry contains the 

equation of a circle, and in all, the five entities contain 13 letters, 11 numeric values, and four words. 
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All in all, this is a lot of symbolic information to process. In addition, the equation of the circle is 

unknown to students in lower secondary school. 

The second finding concerns the use of sliders in GeoGebra. Sliders have the potential to link 

geometric and algebraic representations (Mackrell, 2011). Only a few examples of this exist 

concerning the variable as a generalized number. The slider can be used to search for numerical cases 

by evaluating geometric configurations, as in Tanguay et al. (2013), where students explore the 

number of some polygon that covers a surface to identify divisors. In Soldano and Arzarello (2017), 

students must investigate the numerical circumstances by which two circles become tangent by 

manipulating three sliders that control the radius of each circle and the distance between the circles. 

In these examples, the students do not have access to the algebra view but only to sliders on the 

graphic view. This limits the students to making conjectures about the numeric values displayed, not 

the relationships expressed in algebraic relationships (Paper 1).  

To explore the potential of having access to symbolic representation in combination with the slider 

and graphic representation, we need to expand beyond GeoGebra, to other uses of variables, such as 

in functions or equations. 

The MiGen project, explored by Noss et al. (2012) and Mavrikis et al. (2013), focused on students 

learning pattern construction through the “expresser” microworld. The project involved a box to 

represent numerals as a generalized number, with students employing it to express variable 

relationships in constructed patterns. The crucial step was to provide students with graphic 

Figure 12 ‒ The construction of a dynamic circle and its radius, illustrating the vast and complex 
information in the algebra view 
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representation experiences for constant values and variables in generalizing numeric patterns into 

algebraic relationships. “Locked” and “unlocked” boxes were utilized, and the box itself became a 

symbol enabling explicit representation of changed and unchanged elements, as well as perceived 

relationships within a model. 

In another experiment with the microworld MoPiX, 17 year-old students could modify equations of 

bouncing ball graphs, altering animations such as making balls collide or ‘juggle’. Kynigos et al. 

(2010) observed students progressing to investigate how variables and constants influenced the 

graphs, forming connections between MoPiX equation syntax and the animated behaviors of objects.  

Two distinct approaches emerged in these two projects: the first used graphic representation to 

enhance variable understanding, while the second introduced symbolism and prompted students to 

explore its influence on graphic representation. 

The two studies indicate that a microworld where students create and manipulate symbolic 

representations that are simultaneously graphically represented serves as a context for conjecturing 

intrinsic algebraic properties related to variables. However, as the representational structures of 

GeoGebra can be complex, the representations must be considered with concern to the age group.  

The following HDH includes considerations of designing tasks for the use of the algebra view: 

C: Tasks where students create and manipulate symbolic representations that are simultaneously 

graphically represented can serve as a context for conjecturing about intrinsic algebraic properties 

related to variables (Kynigos et al., 2010). However, the complexity of the representational 

infrastructure of GeoGebra must be considered so that the representations students are to handle 

are accessible to them (paper 1).  

6.1.3 Designing for lower secondary students in Denmark 

In this section, I discuss the mathematical content with regard to the concept of variables and 

suitable intrinsic properties for the age group of lower secondary students by taking into account the 

HDHs A and C.  

A. The intrinsic properties of the task must be known to the students but in problems novel to 

students (Duval, 2007; Niss & Højgaard, 2019), because it fosters a need for validation 

(Lithner, 2008). 

C.  Tasks where students create and manipulate symbolic representations that are 

simultaneously graphically represented can serve as a context for conjecturing about intrinsic 

algebraic properties related to variables. However, the complexity of the representational 
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infrastructure of GeoGebra must be considered so that the representations students are 

presented with are accessible to them (based on review).  

Specifically, I discuss what concepts are familiar to students in 7th grade and can be symbolically and 

graphically represented in GeoGebra, furthermore, in such a way that students can construct and 

manipulate them within the algebra view.  

Variables are one of the most fundamental concepts of algebra (Knuth et al., 2011). They have 

different meanings and uses, such as representing a specific unknown value or function, a 

generalized number that can represent several or infinite values, or a variable in a functional 

relationship where it represents a range of values and has a systematic relationship to another set of 

values (Rhine et al., 2019). This study considers the variable as a generalized number, which means 

that it represents a range of values or all possible values. 

It is widely recognized that concept formation has a dual nature and a development involving 

processes and objects (Douady, 1991; Dubinsky, 1991; Noss et al., 2009; Sfard, 1991). The early stages 

of mathematical education will typically focus on comprehending basic processes, such as counting 

or performing calculations. For young students, concepts are initially tied to processes within specific 

numeric situations. However, as students move on to lower secondary education, they must develop 

a structural understanding of these processes (Sfard, 1991). Ideally, concepts evolve into abstract 

objects, enabling the exploration of structures and relationships (Douady, 1991). 

Concerning variables, Noss et al. (2009) emphasize that generalization involves moving beyond the 

specific, recognizing the structural properties, relationships, and patterns that variables (and 

constants) represent. Introducing variables often marks students’ first step into objectification, 

requiring them to perceive a letter as representing all values subject to the same computational 

manipulation as numeric values. This means that students must gradually objectify the processes 

into abstract and structural concepts that can be manipulated. The variable represents relationships 

and properties in structures with other objects. Hence, as objects in algebraic expressions, they 

represent general rules that can be deduced from patterns or families of problems (Rhine et al., 

2019). Handling variables requires students to recognize the type of variable applied in a specific 

context and how it relates to other objects. 7th grade students in Denmark have typically been 

introduced to the definition of a variable as an expression of all values, and they have experienced 

procedures concerning variables in equations, functions, and formulas (Ministry of Children and 

Education, 2019). 

As argued above, the complex representational system that commence from the use variable in 

GeoGebra’s algebra view can preclude students’ engagement with justification. To keep the 

representation manageable, I take the position that the representation should be as basic as possible 
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to let students focus on the problem and justification rather than having to grapple with the 

representation system.  

In GeoGebra, as in both Euclidean and Cartesian Geometry, the point is the most basic object, 

followed by lines and segments. Cartesian Geometry is taught in Danish primary education from the 

early grades onwards (Ministry of Children and Education, 2019). Representations from the domain 

of Cartesian Geometry are also incorporated in the representational infrastructures of GeoGebra, 

making a basic concept like points in the coordinate plane accessible for students to represent and 

transform algebraically. Plotting coordinates into a coordinate system is, for the most, a trivial task 

in the 7th grade. From the 7th grade onwards, students are introduced to linear and non-linear 

equations and functions, including the coordinate system’s graphical representations. They are, 

however new concepts for the students and cannot be considered well-known mathematical 

knowledge at that time.   

Intrinsic properties and concepts can be algebraically and graphically represented by points and 

lines and can be, depending on an explicit variable, equality, infinity, limits, parallelism, length, and 

distance. Points can also have intrinsic properties, as vertices in a construction, or indicate a specific 

property of other objects, e.g., the midpoint of a line.  

What concrete properties and concepts to pursue are explored further from the creative perspective.  

6.1.4 Overview of the humble design heuristics 

The HDHs for the first iteration to be refined in the following are:  

If you want to design tasks for early secondary students to exercise their RC in 

justification about variable as a general number when using GeoGebra’s algebra view 

and graphic view, you are advised that:  

A. The intrinsic properties of the task must be known to the students but in problems novel to 

students (Duval, 2007; Niss & Højgaard, 2019), because it fosters a need for validation 

(Lithner, 2008). 

 

B. “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support 

students in forming claims and engage in justification processes about algebraic relationships 

and concepts based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010). 

 

C. Tasks, where students create and manipulate symbolic representations that are 

simultaneously graphically represented can serve as a context for conjecturing about intrinsic 

algebraic properties related to variables (Kynigos et al., 2010).  However, the complexity of 
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the representational infrastructure of GeoGebra must be considered so that the 

representations students are to handle are accessible to them (paper 1). 

Other didactical concerns that should be considered in the construction of tasks are: 

• Include introductions to the new tools and support the interpretation of the representations 

they produce in the support of students’ instrumental genesis (IAME). 

• Progression in complexity  

6.2 ITERATION 1: EXPLORING DESIGN POSSIBILITIES  
The following section describes the creative perspective of the first iteration and presents snapshots 

from the retrospective analysis, which leads to a revisit of the HDH.  

6.2.1 The creative perspective - exploring design possibilities 

The creative perspective in the first iteration was characterized by constructing tasks concerning a 

range of intrinsic properties and representations to see how students would manage. In these 

processes, I also decided to focus solely on tasks that used the algebra view, as it became 

progressively more evident from the analytical perspective that this was a less explored territory in 

MER for the age group. At this stage of the design phase, the aim was to explore possible design 

ideas. 

Seven tasks were part of the explorative design and became part of the classroom experiments in the 

first iteration. In the following retrospective analysis, I discuss the lessons of these experiments. 

6.2.2 Snapshots from the retrospective analysis  

Out of the seven tasks, this section discusses three of them, representing core issues observed in the 

classroom experiment and considered in the retrospective analysis. Two tasks had issues that 

prevented their further development, while the third task inspired the creation of a microworld with 

variable points. 

The first issue was tasks where the algebraic properties were not represented explicitly, which led 

the students to focus more on the geometric properties represented in the graphic view. The task 

“Relationships between lines” (Figure 14) exemplifies this.  

Title of task: Relationships between lines 
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Questions  

For the tasks, you only have access to the algebra view and the graphic view. In the app, you will find the 

line segment AB = f.  

1. Construct line segment CD by typing in the input field: 

              C = (x(A),0) 

              D = (x(A)+3AB,0) 

              Segment(C,D)  

2. Investigate and explain what happens when you drag A or B. 

3. Is it true that CD is always 3 times AB? Justify your answer. 

4. Construct a line segment EF that is always half of CD. 

5. Justify why your construction is correct.  

6. What is the relation between line segments AB and EF? Justify your answer.  

7. Is it possible to construct a line segment four times the length of EF that is also double the length of 

AB? Explain and justify.  
Figure 13 – The task “Relationship between lines”. Above: The GeoGebra app for the task. Below: the 
questions posed in relation to the task 

This task made me aware of how variables can be constructed and represented in GeoGebra. Recall 

that dynamic construction is achieved using variables, which can be either implicitly represented 

through geometric shapes or explicitly represented using the slider tool. In the “Relationships 

between lines” task, the variable was represented implicitly, which appeared to make the students 

focus more on geometric properties and visual arguments, e.g., comparing lines by visual 

assessment.  
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Title of task: Construct a dynamic right-angled triangle 

 

Questions 

1. Explore how points A and B move as you change j by pulling the slider and dragging the points.  

2. Explain how point B moves and why. 

3. Construct a new point, C, that has the distance j to point A, and ABC is a right-angled triangle, also 

when you change the value of j. 

4. Justify why your solution still works as you change the value of j.  
Figure 14 – Construct a dynamic right-angled triangle. Above: the GeoGebra app for the task. Below: the 
questions posed in the tasks 

The second issue pertained complexity of representation when using symbolic notation in the 

algebra view. Both the "Relationships between lines" (Figure 13) and “Construct a dynamic right-

angled triangle” (Figure 14) exemplify this concern.  
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Notice that in both tasks, the endpoints of new lines depend on the position of already constructed 

points. For instance, C = (x(A),0) and D = (x(A)+3AB,0) are dependent on the x-value of the point 

A. This poses two problems. 

The “Relationships between lines” task involves representations from three distinct domains: 

coordinate geometry (since line endpoints depend on the coordinates of other endpoints), arithmetic 

(as multiplicative properties are represented), and geometry (in the definition of lines). The students 

engaged with the tasks but could get lost trying to decipher how to construct new points and lines. 

Some students did not recognize that they were typing in coordinates. Instead, they tried to copy the 

Title of task: Moving points 

Empty GeoGebra applet 

with access to the 

algebra view but no 

geometric tools.  

 

 

 

 

 

 

 

 

Question 1 is solved with paper and pen on a coordinate system  

B = (1,s)  and C = (s,1),  

1. Show on a paper coordinate system how you think B and C move as s changes value. 

2. Explain why.  

3. Type points B and C into the input field of the algebra view.  

  a) change the value of s by dragging the slider.  

  b) turn on the trace of B and C (by right-clicking on the points). 

  c) again, change the value of s by dragging the slider.  

  d) explain what you see. 

4. Did the points move as you predicted?  

If not: Explain how they move and why. What did you miss in your prediction? 

If they did: explain what you understood about the points that made your prediction true.  

Figure 15 – Moving points. Above: The GeoGebra app for the task. Below: The questions posed in the 
tasks 
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systemic of the existing objects, which can be considered imitative reasoning (Lithner, 2008), and 

they would base their justification on visual assessment alone. 

In the “Construct a dynamic right-angled triangle” task, the surface property is the geometric 

properties of a right-angled triangle, and the intrinsic property is that a variable represents the same 

value every time it appears with in the same task. Both properties were familiar to the students in 

the pilot test, and some would consider the variable, while others would get confused by the notation 

of interdependent points.  

In both tasks, the students had to learn how to interpret the new notation by exploring the 

representation. The justification focused on the representational structure rather than the intrinsic 

properties of the tasks. The retrospective analysis indicated that the use of notation where points 

depend on other points appear too unfamiliar to the age group. 

The “Moving points” task (Figure 15) follows the “justified prediction-observation-explanation” 

structure. It later became the outset for the design idea of variable points, leading to the design of a 

microworld (elaborated in the following sections). This task was more accessible to the students as 

the ordered pairs in the algebra view were known to them, and the use of variables was explicit and 

simple with familiar algebraic notation. The graphical representation of a point is also simple and 

familiar. The “simplicity” I hypothesized would allow students to explore and put forward 

conjectures to be justified, rather than getting “lost in translation” of complex notation.  

6.2.3 Revisiting the HDH 

The retrospective analysis of the explorative design adds specifications to the HDHs 

A and C, which have been added in bold: 

If you want to design tasks for early secondary students to exercise their RC in 

justification about variable as a general number when using GeoGebra’s algebra view 

and graphic view, you are advised that:   

A. The intrinsic properties of the task must be known to the students but in problems novel to 

students (Duval, 2007; Niss & Højgaard, 2019), because it fosters a need for validation 

(Lithner, 2008). Intrinsic properties expressed in terms with variables may be 

signified using explicit variables rather than implicit ones. This is because 

implicit variables may cause students to focus on geometric properties rather 

that algebraic properties and that explicit variables provide students with 

access to direct manipulation of terms with a variable in the algebra view. 
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B. “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support 

students in forming claims and engage in justification processes about algebraic relationships 

and concepts based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010). 

 

C. Tasks where students create and manipulate symbolic representations that are 

simultaneously graphically represented can serve as a context for conjecturing about intrinsic 

algebraic properties related to variables (Kynigos et al., 2010).  However, the complexity of 

the representational infrastructure of GeoGebra must be considered so that the 

representations students are to handle are accessible to them (paper 1). This might be 

obtained with variable points as ordered pairs and simple algebraic expressions 

familiar to lower secondary students. In addition, using notations of points 

depending on other points is not advisable for lower secondary students. 

6.3 ITERATION 2: THE MICROWORLD OF VARIABLE POINTS  
From the creative perspective, the following elaborates on the design of a microworld and the 

construction of a task sequence. Then, as in the previous iteration, snapshots of the retrospective 

analysis are elaborated, and the HDHs are now progressed into design principles.   

6.3.1 The creative perspective: From explorations to the design of a microworld 

The idea of variable points grew from the task “Moving points”, presented above in Figure 15, but 

was still unexplored as a learning object for justification. It was somewhat inspired by visual 

programming, such as JavaScript – that is to say, making things move on a screen through 

computational tools. Programming can engage children in reasoning about structures and patterns 

in computer algorithms and is increasingly incorporated into mathematics curricula (Kilhamn et al., 

2022). Nonetheless, as a mathematics teacher I encountered issues regarding programming in 

mathematics education, which is also reflected in MER. Programming has its own syntax, which is 

not directly transferable to mathematics thoery. For example, a variable in mathematics is an 

expression of generality, whereas in programming, a variable stores a specific value that can be 

changed under certain events (Bråting & Kilhamn, 2021; Kilhamn et al., 2022). 

Another example is the definition of space. In most programming languages, including JavaScript, 

the plane is described in pixels in positive integers; (0,0) is in the top left corner of a screen or 

window, and pixels describe length and width relative to the screen size. This is considerably 

different from the coordinate plane, which is endless in two dimensions from its origin. 

Programming activities in regular programming environments lack mathematical theory and do not 

necessarily influence students’ mathematical capabilities (Benton et al., 2017; Boylan et al., 2018; 
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Kilhamn et al., 2022). Hence, Kilhamn et al. (2022) argue that programming activities in 

mathematics should draw on mathematical theory rather than computer theory if the aim is to 

support mathematical development.  

From this perspective, GeoGebra provides a mathematical programming language, and the 

microworld of variable points is an attempt to “make something move on the screen” that embodies 

a mathematical subdomain where students can engage in justification. Though programming 

inspired the idea of variable points, it had to be developed into something tangible for the student to 

engage with and exercise their RC. Therefore, I will leave the programming analogy and describe the 

design as a microworld.  

There are different approaches to designing tasks for digital tools. Frequently, traditional math 

problems have been redesigned to exploit the affordances of a particular tool. This study follows 

another design tradition of microworlds, initially envisioned by Papert (1980), who aimed to 

reconstruct mathematics teaching using computer software as media designed for mathematics 

learners. Microworlds are now recognized as computational environments incorporating a cohesive 

set of scientific concepts and relationships. They are thoughtfully designed to allow students to 

engage in exploration and construction activities that foster meaningful learning experiences, aided 

by carefully curated tasks and pedagogical strategies (Healy & Kynigos, 2010; Sarama & Clements, 

2002). They provide students with an environment to analyze the components of objects and 

construct and deconstruct objects. This should facilitate the exploration of mathematical 

relationships among and between the objects and their corresponding representations (Hoyles, 

1993). Since Papert (Healy & Kynigos, 2010; Papert, 1980) introduced microworlds, it has 

transcended mathematics education into the natural sciences, and it has been used to design many 

digital technologies.  

Commonly, the structural aspects of a microworld are a set of computational objects designed to 

reflect the structure of mathematical entities within some subdomain of mathematics. It does so 

through (often new) multi-representations that link the underlying mathematical or scientific 

entities or objects. Typically, it has a symbolic and a graphic component, but it can have others. The 

objects and operations can often be combined to form more complex objects or operations. 

Furthermore, a microworld will usually include a set of activities that support students in examining 

the structure of the microworld, e.g., worksheets or verbal instructions in which the student is 

challenged to use the objects and operations to solve a given problem (Edwards, 1998).   

The design process was characterized by constructing tasks and showcasing them in different 

settings to get feedback from colleagues, supervisors, professors at PhD courses, and the 

participation teachers. In the following, I present the microworld and two selected tasks.   
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The central objects of the microworld are variable points, which embody variables as a generalized 

number in its singularity, and simple algebraic expressions (e.g., with a factor and/or a coefficient) 

with coordinate geometry as the graphic representation. In its most simple form, the microworld of 

variable points appears like this:  

In the algebra view, there is an ordered pair with an explicit variable. In the graphic view, the ordered 

pair is represented as a point in the coordinate plane; the point changes its position as the value of 

the variable is changed with the slider. The variable is restricted to [-5,5], creating a limited space of 

the dynamic movement, and points can be “shifted” in either dimension by adding a constant in the 

ordered pair. There can be several variable points, and the ordered pair can contain simple algebraic 

expressions and have a variable in both the x and y coordinate. The primary artifacts are the slider 

tool and constructing ordered pairs through the input field. The two-dimensional space of the 

coordinate system allows students to justify properties and relationships of both variable and 

constant terms in the dynamic movement of points. The dynamic representation allows students to 

consider both the structural and variable aspects within the same low-complexity representation. If 

students can relate the movement of the points to the terms in the algebra view, the microworld 

allows students to make claims and justify algebraic properties. This means that students working 

within the microworld through retrospective analysis can advance HDHs A and C into more 

concrete, elaborate design principles concerning justification. Conversely, HDH B requires the 

implementation of the “justified prediction-observation-explanation” structure. 

Figure 16 ‒ Basic state of the microworld of variable points 
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Construction of a tasks sequence 

For the classroom experiments in iteration 2, I constructed a task sequence organized into three 

main problem sets, with several tasks and sub-questions. Furthermore, the task questions were 

formulated for students to exercise justification. An online version was implemented in Class A. In 

Class B and C, a version with a Word document and online GeoGebra apps was implemented. Both 

versions, including task sequences, can be found in Appendix A. The three problem sets progress in 

complexity. The first set is introductory and does not involve any variables. Instead, it reminds 

students of their knowledge of ordered pairs and points in the coordinate system. In this set, students 

are asked to conjecture and justify the relationship among static points. The second problem set 

progresses to variable points in one dimension, either in the x or y value of the point. The third 

problem set involves variable points in two dimensions, with x and y values.  

Throughout the sequence, tools available in the geometric toolbar is kept to a minimum to ensure 

students use the algebra view to complete the tasks. The introduction to the tools, such as the slider 

and the trace function, was integrated into the tasks when needed.  

Teacher collaboration  

Initially, I met with the teachers to go over the task sequence and adjust specificities according to 

their students and the class discourse. In addition, this allowed both the teachers and me to support 

the students as they worked through the task. I supplied the teachers with a teacher instruction 

guide, including suggestions on how to guide the students without giving them specific answers and 

how to support them in forming justifications and solutions to each subtask. Between each classroom 

experiment, the design was evaluated together with the classroom teacher. In class, we noticed that 

students struggled to formulate written answers, even when they were able to explain and justify 

orally. To support students’ written justification, we therefore developed an answer guide, which was 

introduced to the students at the start of the experiment.  

Below is an example of an answer guide for question 4b in problem set 3 (Appendix A). The answer 

guide was inspired by Duval’s (2007) method of structuring mathematical reasoning with two 

premises and a conclusion, but recognizing that students are not required to produce formal proofs 

but justifications. Therefore, the answer guide prompts students to elaborate on their mathematical 

knowledge about relevant intrinsic properties and connect it to their answer. The answer guide 

meant that tasks were now presented in a Word document, rather than being online.  
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Answer: 

 

Answer guide: 

Your argument must include the following points: 

• What is required for a point to move from the 2nd 

quadrant to the 4th quadrant? 

• What is the coordinate set for J? 

• Why does it lead to that J moves from the 2nd quadrant 

to the 4th quadrant?  

The evaluation with teacher 1 after the test in classroom B concluded that students still struggled to 

form cohesive written arguments, but the answer guide prompted students to further reflect on their 

solutions and incited them to refer to intrinsic properties. Consequently, it also added to the time 

students spent on each task, thus fewer students completed the whole set. Going forward, to 

maintain focus on the student’s use of the algebra view, the impact of the answer guide is not further 

explored, but I consider it a variable in the design that enhances the data obtained.  

6.3.2 Snap shots from the retrospective analysis  

As Edwards (1998) points out, students’ difficulties with a microworld can arise from issues in the 

design and interface and can be helped through changes to design and tasks. Other difficulties are 

evidence that the student is confronting a significant learning opportunity. Indeed, the retrospective 

analysis should identify tasks that hindered students from exercising their reasoning competencies 

in the justification process. For task development, the retrospective analysis explores how the 

microworld allows and hinders opportunities for students to engage in justification processes as an 

exercise of RC. 

To gain a comprehensive understanding of how students approached the tasks, and to identify the 

significant tasks, each data set (representing the work of one student pair) was compiled into a 

collective Excel sheet. I summarized the students’ responses and noted any interface issues. I 

identified and analyzed cases of students appropriating the microworld in their justification 

processes and confronting significant learning opportunities concerning properties of the variable. 

An analytical tool was developed in iterative processes as an attempt to capture the intricacy of the 

interplay of students’ tool use and justification processes. The development of the analysis tool and 

results of these analyses are elaborated in Chapter 7 and 8. Cases where students were challenged 

but engaged in reaching a solution and justifying it provided deeper insights on the microworld and 

task design, as they both exposed challenges within the design and how affordances of the 

microworld were (intendedly and unintendedly) used by the students.  

Two tasks emerged as particularly significant: the prediction tasks and the “Equal points” task. Both 

are presented below. Parts of these two tasks also appear in the papers 2, 3, 4, and 5, but the full 

versions presented here can afford additional context. Following the elaboration of iteration 3, I 
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present some of the design development that emerged from analyzing students’ work on these two 

tasks.  

Prediction tasks 

The “justified prediction-observe-explain” task structure was implemented in the task sequence as 

the first tasks in problem sets two (concerning one-dimensional variable points) and set three 

(concerning two-dimensional variable points). Below are the two prediction tasks illustrated in 

Figure 17  and Figure 18. The first prediction task is discussed in paper 2 and 5. The two tasks were 

developed from the “moving points” tasks (see Figure 15).   As pertained in paper 5,  

“Unlike traditional positions of prediction in mathematics education as a statement 

or conjecture anticipating either the solution to the problem or the strategy used to 

reach a solution (e.g., Boero, 2002; L. A. Kasmer & Kim, 2012; Palatnik & Dreyfus, 

2019), the intention in this case is to leverage predictions and thus give “students the 

opportunity to defend or refute ideas” (Kim & Kasmer, 2007, p. 298). Consequently, 

I consider the prediction task a problem in itself…” (p.5). 

A notable modification compared to the explorative version in iteration 1 (see figure 16) is the shift 

from making predictions on a traditional paper coordinate plane to a restricted interface of 

GeoGebra. The confined interface transforms the graphic view into a notation interface with dynamic 

tools that allow the students to move points on the screen and trace their movements, replicating 

dynamic movement. The restrictions are enforced to prevent students from constructing the points 

by typing the variable points into the algebra view. Predicting dynamic behavior and justifying the 

prediction allows inference that would not be possible in a pen-and-paper environment, as both the 

constant and the variable would be represented statically (Noss et al., 2012). 
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Titel: “Justified Prediction- Observation-Explanation” task of one-dimensional variable points  

 

Q1  

Read: 

Points can have a variable in the coordinate set such as these two points: 

A = (1,s) and B = (s,1) where s is a variable. 

Q2 

Show and explain how you think points A and B move in the coordinate system when s changes value. 

(To do so, you can use the tools in the toolbar, and you can also right-click and use the tools there) 

Q3  

Justify your hypothesis - why do A and B move as you claim? 

Answer guide: 

In question 2 you have shown how you think A and B move. 

You must argue why the points move exactly like that. 

• Write what you know about the coordinates of the points. 

• Write why this means that they must move exactly as you say. 

 

Q4  

Construct the points A = (1,s) and B = (s,1). It is important that you write s in the coordinate sets. 

Q5 

a) Change the value of s by dragging the slider. 

b) Turn on “show trace” for the points (right click on the points) 

c) Change the value of s again by dragging the slider. 

d) Explain to the camera how the points move. 

e) Also explain why they move like that. 

Figure 17 - Justified Prediction- Observation-Explanation task, iteration 2, problem set two 

 

Initial state Q2 

Q4+5a-c 



79 
 

 

 

Titel: “Justified Prediction- Observation-Explanation” task of two-dimensional variable points 

 

Q1 

D = (s,s) and s is a variable. 

Show in the coordinate system how point D moves when s changes value (You can use the tools in the toolbar, and you can also right-

click). 

Q2 

Justify your hypothesis - why does point D move as you claim?  

Answer guide: 

In question 1 you have shown how you think D moves. You must argue why D moves exactly like that. 

Write what you know about D and why this means that D moves exactly as you say. 

 

 

 

Q3 

a) Type D = (s,s) into the GeoGebra app. 

b) Change the value of s by dragging the slider. 

c) Does the point move as you expected? 

d) Describe here how the point moves. 

e) Justify why D moves exactly like that. 

Answer guide: 

Consider your answer for question 2. Can you still use the argument after you have seen the point move in GeoGebra? 

• If yes, copy it down here. Is there anything that needs to be added or changed? 

• If no, formulate a new argument 

Figure 18 - Justified Prediction- Observation-Explanation task, iteration 2, problem set three 

Q1

  

Initial state 

Q3a
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Specifically, the restricted interface gives access to the ‘move tool’, ‘the point tool’, the ‘trace 

function’, and the ‘pen tool’. The point tool enables the placement of free points on the coordinate 

plane, allowing subsequent movement using the move tool. When using the point tool, students must 

assign numerical values to each point they place. Multiple values of the variable can be depicted by 

plotting several points, shifting a single point, or activating the trace function, which leaves a track 

of points where the point is dragged across the screen. However, tracing can be challenging when 

moving a free object as it is susceptible to cursor movements. The point tool and trace function are 

designed for representing mathematical objects and properties. In contrast, the pen tool allows free 

drawing, requiring students to apply mathematical properties or functionality, such as the notation 

of values, sketching, plotting, tracing points, or drawing lines. Regarding RC, the prediction task 

required the students to expand their radius of action (Niss & Højgaard, 2019), as predicting variable 

points are a new kind of problem for them.  

Furthermore, the restricted interface also required an unfamiliar use of the tools. Hence, the 

prediction tasks also involved processes of instrumental genesis. In paper 5, I demonstrate how the 

instrumental genesis process also contributes to the development of the technical aspect of RC, as 

the progressing complexity of tool use also necessitates inferences about the intrinsic properties of 

the prediction. However, the restricted interface also did cause confusion for some of the students. 

For instance, some would attempt to activate the algebra view or even open a new GeoGebra app to 

construct the points in the algebra view, obstructing the prediction step. 

Paper 5, elaborate that the dynamic behavior of objects in a DGAE reflects the process-object nature 

of concept formation as either a discrete collection of examples or continuous movement. Miragliotta 

and Baccaglini-Frank (2021) describe that in predicting dynamic objects, students may pinpoint 

specific positions or envision, enact, or imitate continuous movements. This also holds true for 

variable points, as students can predict their dynamic behavior as shifting between positions in a 

coordinate plane or moving along a trajectory. 

In paper 5, both discrete and continuous prediction is observed in the justification process of a pair 

of students, as they progress from predictions based on discrete examples to ones based on 

continuous movement. Naturally, both types are observed across the data set from these tasks, 

through the discrete is more common.  

Recall that the nature of a prediction task requires that students draw on their own knowledge to 

make the prediction and justification. The observe-and-explain steps of the prediction task also 

allowed students to further elaborate, adjust, or advance the prediction and justification. Here 

follows an example from class C, school A.  
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In paper two, I present a short argument put forward by a pair of students concerning the first 

prediction task (see Figure 17). The students claim a structural relationship: that A and B form a 

slanted line. This is true but not a relevant answer to how the points move in the coordinate plane.  

After the students test their prediction by observing the points move on the screen by animation, 

they explain that the points move more like a cross, though the points do form a slanted line. After 

observing the tracing of points, they also add that the points can continue tracing infinitely. In this 

case, the observe-and-explain step of the task, prompt the pair to adjust their prediction to focus on 

the trace of points and elaborate on more relevant properties.  

The adjustment and elaboration of the prediction was very common in the observe-and-explain 

phase, particularly in the first of the prediction tasks. Properties that commonly appeared in the 

justification of predictions were equality, infinity, limits, that the variable has the same value in all 

terms it appears in, structural relationships of the point’s trajectories with regard to the coordinate 

system, and the structural relationships of the line formed between A and B as having a constant 

slope.  

For the second prediction task, the prediction was very short, and very few students justified it. I 

ascribe this to two factors. For one, in the second prediction task, the unfamiliar had become more 

familiar, which was evident as students were very confident in their prediction. Consequently, the 

students considered their prediction true and were less inclined to justify it. Secondly, the students 

became less engaged in the tasks as they tired near the end of the experiment.  

The equal points task 

The equal points task is discussed in papers 3 and 4. Paper 3 concerns iteration 2, and paper 4 

concerns iterations 2 and 3. The task is part of the second set with one-dimensional variable points, 

and concerns points A and B from the first prediction task. For this task, the algebra view and its 

tools are accessible, but the toolbar is restricted to the cursor, the line construction tool, the parallel 

line construction tool, and the perpendicular line construction tool. The restriction on the toolbar 

was made to ensure that the students used the tools accessible in the algebra view. This task, 

particularly Q8, posed a significant opportunity for student’s justification processes concerning the 

algebraic terms of the variable points, as related to equality, but it was missed by most students. In 

task A, all students constructed a point C that was not equal to point B for any value of s. In task B, 

the students were able to recognize that A and C could not be equal, but most students’ justification 

relied on the geometric property of parallelism in the movement of the points.  
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Title: The “equal points” task”, iteration 2  
Q7   

a) When does A = B?  

b) What arguments can you come up with to justify when A = B?  

Answer guide: 

For the answer you must see how many different arguments you can come up with, which justify that your answer in 7a) is correct. 

Consider: 

• What do you know about the points? 

• What do you know about the variable s? 

• What can you see? 

• Why are the points not the same elsewhere? 

 

Q8 

a) Construct a new point C depending on s, which moves parallel to A (so s must be in the coordinate set of the new point). 

b) Can C = A, and if so, when?  

c) Can C = B, and if so, when? 

d) Justify your answer. 

Answer guide: 

You must argue why the points are equal or not. Therefore, you must consider what it takes for them to be equal. Write what you find 

out as the first point in your argument. 

• Write something about point B. 

• Write something about point C. 

• Write why this means that your answer must be correct. 

 

If you find that C cannot be equal to B, try to see if you can change C so that they can. Maybe that can support your argument? 

Figure 19 – The “equal points” task, iteration 2, problem set 2 

In Q8c+d, all but one pair of students answered that C = B was not possible based on 

phenomenological justification. One pair of students did recognize that if they changed point C while 

maintaining parallelism in its trajectory to that of A, it would be possible for C to equal B. This pair 

was subjected to analysis in paper 3, while the whole data set of the task was analyzed in paper 4.  

A significant discussion in a design context is why Q8 was inaccessible to most of the students. 

Paper 3 indicated that the pair who did solve the task obtained a generalized view of variable points, 

as they considered point C one set of a collection of possible sets. In paper 4, I argued that this 

conception was a prerequisite for students’ engagement with the task.  

Q8a 
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Other valuable insights, in a design perspective, from paper 3 concern the phenomenological 

impressions of the variable points related to the algebraic terms in the coordinate sets, which 

students can experience and use in their justifications when solving the equal points task. One such 

insight was that the animation of a slider can give the impression that the speed of points depends 

on the coefficient. Another was that changing the coefficient could be experienced in terms of length 

of the trajectory of points and that the intersections of two trajectories indicate the coordinate 

position for when points are equal.  

6.3.3 From HDH to design principles 

The retrospective analysis of the two tasks can now provide insight allow for the addition of empirical 

arguments to the HDH, advancing them into design principles, proving concrete recommendations 

related to the normative elements of the design principles. The added insights are in boldface, and 

the design principles are in the form proposed by Van den Akker (1999) (see chapter 4.).  

If you want to design tasks for early secondary students to exercise their RC in 

justification about variable as a general number when using GeoGebra’s algebra view 

and graphic view, you are advised that:   

A. The intrinsic properties of the task must be known to the students but in problems novel to 

students (Duval, 2007; Niss & Højgaard, 2019), because it fosters a need for validation 

(Lithner, 2008). Intrinsic properties expressed in terms with variables may be signified using 

explicit variables rather than implicit ones. This is because implicit variables may cause 

students to focus on geometric properties rather that algebraic properties and that explicit 

variables provide students with access to direct manipulation of terms with a variable in the 

algebra view. Students’ knowledge about properties related to variables and 

algebraic terms, such as equality, infinity, and structural relationships, can be 

operationalized in justification processes through tasks about variable points. 

However, tasks that require students to have a generalized conception of 

variable points can prevent students from exercising RC. Furthermore, tasks 

where points move on parallel trajectories can deflect students to provide 

justifications of a geometric nature rather than algebraic.  

 

B. “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support 

students in forming claims and engage in justification processes about the dynamic behaviors 

of variable points and engage in justification about algebraic relationships and concepts 

based on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010) of properties of the 

variable to justify patterned movements as algebraic relationships.  The 
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observe-and-explain phase urges students to elaborate and adjust their 

predictions according to observations. In addition, it is favorable to use a 

dynamic interface for the prediction rather than a paper environment. The 

dynamic interface allows students to represent variable relationships as 

variables, and dynamic tools allow students to predict variable points as both 

continuous and discrete movements. However, the restriction can be confusing, 

and students might disrupt the process by jumping ahead in the task, or by 

constructing points in the algebra view if made accessible.  

 

C. Tasks where students create and manipulate symbolic representations that are 

simultaneously graphically represented can serve as a context for conjecturing about intrinsic 

algebraic properties related to variables (Kynigos et al., 2010).  However, the complexity of 

the representational infrastructure of GeoGebra must be considered so that the 

representations students are to handle are accessible to them (paper 1). This might be 

obtained with variable points, as ordered pairs and simple algebraic expressions are familiar 

to lower secondary students. In addition, using notations of points depending on other points 

is not advisable for lower secondary students. Using the animation feature of the slider 

can provide students with phenomenological impressions of speed as a dynamic 

property of a variable with a coefficient. If the trace function of a point is active, 

changing the coefficient in a variable point can be experienced in terms of the 

length of the trace, and on the intersections of traces, to indicate the coordinate 

position when points are equal.  

6.4 ITERATION 3: STRENGTHENING DESIGN PRINCIPLES 
From the creative perspective, the following elaborates on the revision of tasks. Snapshots of the 

retrospective analysis are elaborated on, but contrary to the previous two iterations, the design 

principles are not revisited, as they are revised and discussed in the subsequent discussion.  

6.4.1 The creative perspective 

Several developments were implemented in the third iteration. The entire task sequences can be 

found in Appendix B. Due to the limitations of the kappa; I give a general description of the 

development of the sequence and only elaborate on the development of the prediction tasks and the 

equal points tasks. 

In the third iteration, the introductory tasks emphasized trace and animation and allowed students 

to explore variable points in a preconstructed GeoGebra worksheet. Entirely new tasks containing 
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several sliders, were also introduced, to emphasize the difference between variable points that co-

vary and points that do not. Some tasks with parallel moving points were redesigned so that the 

intrinsic properties focused on the coefficient rather than the geometric property of parallel 

trajectories, which deflected students from algebraic justification.  

Developments concerning prediction tasks 

To accommodate students’ confusion with the restricted interface of the prediction tasks, the 

interface was changed to a regular GeoGebra interface. Instead, the task formulation described 

which tool to use for the prediction, and the first prediction task was introduced collectively in class. 

In addition, students were asked to specifically predict the trace.   

The success of the prediction task led me to implement more prediction tasks with more complex 

terms than in iteration 2. In Figure 20, the prediction task that follow the students prediction of the 

point A1 = (1,s) (as in iteration 2) is presented. In this new prediction task, the students must predict 

the movement of point A2 = (1, s-1), requiring them to consider and justify how a constant term 

influences the position of the trace. This was possible for students to predict, as they had worked 

with traces in the microworld, which limits the variable to -5 and 5.  

Title: “Justified prediction-observation-explanation” task of trace as related to constant terms 

 

 

 

Q2 
g) For this question you can use the pen tool, add points, and the trace function.  
Guess and show how A2 = (1,s - 1)  behaves in the coordinate system when changing the value of s.   
h) Also show where the track will start and end. 

i) Explain your guess. 
j) Explain to each other how A2 is different from point A1. 
k) Now construct point A2 = (1,s-1) and examine what happens when you change the value of s. 
l) Does it match what you thought? Completely, partially, or not at all? Explain why. 

Figure 20 – “Justified prediction-observation-explanation” task of trace as related to constant terms, 
iteration 3, problem set 2 

Developments concerning the “equal points” task 

Several adjustments were made to the equal points task. Some of them are also described and argued 

extensively for in paper 4. In the version of iteration 2, a point C was moving parallel to the trajectory 

of A. In the version of iteration 3, instead of C, point A2 moves on the same trajectory as A1. This 

change was made to accommodate two issues. For one, the parallel moving points deflected many 
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students’ attention from the terms in the algebra view, and thus, they gave a geometric justification 

for their answer (paper 4). Secondly, as the points now moved on the same trajectory, but in two 

different intervals, the task extended students’ experience concerning the influence of constants on 

the position of the trace of variable points, from the prediction task presented in Figure 21. 

Title: The “equal points” task, iteration 2 

 
 

Q3 
 
Note that: A1 = (1,s) and A2 = (1,s-1) and are constructed in the prediction tasks. 
B has in question Q3 a-f) been defined as B = (s,1).  
 

i) Can A1 = B? Please mark your answer and explain why/why not. 
 

a. Yes when: _______________________________________________ 
b. No.  

 
j) Can A2 = B? Please mark your answer and explain why/why not. 
 

a. Yes when: _______________________________________________ 
b. No.  

 

 

k) If you change A2’s x coordinate, is it then possible for A2 = B? 
 

a. Yes when: ________________________________________________                                                              
Explain why your solution applies. 

b. No. Explain why. 
   

l) Change A2 back to A2 = (1,s - 1). 
m) Now, if you change A2’s y coordinate, can A2 = B without A2 = A1?   
 

a. Yes when: ________________________________________________                                       
Explain why your solution applies. 

b. No. Explain why not. 
Figure 21 ‒ The “equal points” task, iteration 3, problem set 2 

 

Q3k Q3m 

Q3 initial state 
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The topmost concern of the equal points task was to make question 8c‒d (see Figure 19) more 

accessible to students. This was addressed by formulating the questions more concretely, with clear 

instructions. The formulation now simply directed students to change the coordinates of A2 to obtain 

equality to B by transforming the x and y coordinates (see question Q3, k‒m in Figure 22).  

6.4.2 Snapshots from the retrospective analysis 

The students from school B, participating in the third iteration, had very little experience with using 

GeoGebra. Consequently, many students experienced technical issues with the algebra view. 7 pairs 

out of 18 did not answer the task due to technical issues or misunderstanding the task. Moreover, it 

also became apparent that students who struggled with identifying intrinsic properties in the 

geometric view was further challenged by the information in the algebra view. An example of such 

issues is demonstrated by a pair of students who put forward a faulty justification for question Q3 

k): If you change A2’s x coordinate, is it then possible for A2 = B? 

Yes, when A2 = (2, s-1) because A2 and A1 are then on different trajectories. 

The students focus on the change of trajectory of A2 as a result of changing the y coordinate from 

1 to 2 using the algebra view. They seem focused on the result of manipulation rather than the 

intrinsic properties of the task. The students fail to relate the justification to equality between 

the relevant points B and A2. Therefore, even though the students do refer to the coordinate set, 

they struggle to identify intrinsic properties in their justification.  

Thus, it is advisable that the students have some experience with GeoGebra’s graphic view prior to 

working with variable points tasks. I address this further in relation to the equal points task.  

In general, less students engaged in justification in iteration 3 compared to iteration 2. This is evident 

in paper 4. In iteration 2, all students who provided a solution also justified it (between 10 and 13 

pairs of students out of 17). In iteration 3, however, only between 4‒6 pairs of students justified their 

answer out of the 10 pairs who provided a solution. This reflects the general picture of the two 

iterations.  

This can be explained by several factors, e.g., that students had been participating in online schooling 

for long periods of time, giving them less exercise with RC. In general, school B put less emphasis on 

mathematical competencies than school A, and their regular teacher did not attend on the day of the 

experiment, due to covid, so the students were less prepared and supported during the experiment, 

as the substitute teacher was not informed about it.  
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The new prediction task 

The new prediction task (see Figure 20) of the point A2 = (1, s-1) was more challenging than the 

prediction tasks from iteration 2. Several pairs made faulty predictions and justifications. For 

instance, several pairs predicted that the point moved on x=-1 or that the point would move slower 

when animated. This made the observe-and-explain step of the task even more significant for the 

justification process, as students needed to adjust their faulty prediction.  

The change from a restricted interface to a regular interface, with the algebra view active, meant that 

students could test their prediction on top of what they had drawn with the pen, making details of 

their predictions more explicit in the test-and-observe step. For example, by showing how the drawn 

length or placement of the trace corresponded with the test. In addition, students could more easily 

compare new predictions to those already tested. Question D, requiring students to compare A1 and 

A2, directed students’ justification to explain how the constant term influenced the trace and the 

comparison of variable points in the prediction, ensuring that students put forward justifications 

that related the trace to the algebraic terms in the ordered pairs.  

Unfortunately, there were still students who were confused by the prediction tasks and would jump 

ahead to constructing and testing the points, so that problem was not eliminated.  

The “equal points” task 

The new task design and the more direct formulation of questions (c‒d of iteration 2; k, l, m of 

iteration 3) did overcome the identified issue of the equal points task. In the third iteration, there 

was no geometric justification, and there was an increased number of students who attempted to 

solve question M. 

Students quite easily found a solution for question K, obtaining equality between A2 and B by 

changing the constant in the y coordinate, and there were no geometric arguments. Instead, there 

was a greater diversity among arguments of those who did justify their answer. Students’ answers 

also provided additional insights into the phenomenological impressions students can have in the 

task. In paper 4, I discuss the students’ phenomenological impressions of trace and intersection in 

their justification of solutions to the equal point tasks, in which some students use the 

phenomenological impression to argue for structural relationships. For example, consider these 

justifications:  

 
Can A2 = B?  (A2 = (1, s-1), B = (s,1)) 

No, as there will always be one point that has a distance to the intersection when the 
other one is at the intersection. 
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And 
 
If you change A2’s x coordinate, is it then possible for A2 = B? 

Yes, when A2 = (2, s-1), because then A2 and B have the same distance to the 
intersection of the trajectories. 

 
These justifications are phenomenological in nature but also imply that the students understand 

the relationship between changing the x coordinate and the position of the trajectory of the point 

left by the trace. Moreover, they understand that the intersection of these trajectories indicates 

possible equality between the points.  

In paper 4, I also relate such justifications to students’ epistemic mediation in their use of the graphic 

view, and I argue that it can be a steppingstone for students’ epistemic mediation in their use of the 

algebra view, if they are challenged to relate their justification to the ordered pair of the variable 

points.  

Concerning question M, “if you change A2’s y coordinate, can A2 = B without A2 = A1?”, there was 

an increased number of students who attempted to solve question compared to question C in 

iteration 2. This shows that the direct formulation of the question made it more assessable and 

engageable for both problem-solving and justification. Still, many students did not obtain equality 

between point A2 and B. In paper 4, I relate this to the problem handling competency and the symbol 

and formalism competency.  

The ability of students to make use of the algebra view as a tool for justification is closely linked to 

their understanding of symbolism and formalism. Incorrect answers may result from incomplete 

knowledge of algebraic rules and procedures. Furthermore, if the student does not attempt to justify 

their solution, their mistakes may go unnoticed.  

An issue that relates to student problem handling competency is that some students rely too heavily 

on a single strategy. Four pairs out of the ten could justify why their technique did not provide a 

sound solution, yet they were reluctant to attempt another technique. Consequently, the lack of a 

solution becomes an argument, and hinders the students exercise of RC that has creative qualities.  
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6.5 DISCUSSION, PART 1: DESIGN PRINCIPLES AND DESIGN 
In this section, I discuss the results in answering the research question of the chapter:  

In what ways can tasks be designed to encourage lower secondary students to exercise their RC 

when using a DGAE in the case of justification focusing on variables as a general number? 

I will articulate and discuss the answer in the form of three particular but related results of the design 

processes. The first results are the design principles also considering contributions of iterations 3. 

The second result is the microworld of variable points, and the third result are the concrete tasks 

presented in the chapter.  

6.5.1 Design principles 

The design principles are the main contribution toward answering in what ways. As is the nature of 

design research, the design principles are particular to the design. However, some aspects can be 

considered from a more general perspective of reasoning in mathematics education, which I will 

debate after presenting the principles. 

The principles have descriptive theory elements (Prediger, 2019) that describe features of tasks and 

phenomena, such as particular phenomenological impressions that can occur. The design principles 

have predictive theory elements (Prediger, 2019) that argue for certain solutions and actions toward 

a given aim or problem, or predict outcomes of actions, design elements, or structural elements. 

Explanatory theory elements of certain phenomena are closely related to the theoretical 

development (Prediger, 2019), which are presented in the subsequent chapters. Hence, explanatory 

elements are discussed in the final discussion in Chapter 9. 

In the following, I present the final design principles A, B and C. Again, they are presented in the 

form proposed by Van den Akker (1999) (see chapter 4). New contributions from iteration 3 are 

added in bold.  

If you want to design tasks for early secondary students to exercise their RC in 

justification about variable as a general number when using GeoGebra’s algebra view 

and graphic view, you are advised that:  

A. The intrinsic properties of the task must be known to the students but in problems novel to 

students (Duval, 2007; Niss & Højgaard, 2019), because it fosters a need for validation 

(Lithner, 2008). Intrinsic properties expressed in terms with variables may be signified using 

explicit variables rather than implicit ones. This is because implicit variables may cause 

students to focus on geometric properties rather that algebraic properties and that explicit 

variables provide students with access to direct manipulation of terms with a variable in the 
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algebra view. In order for students to be able to recognize the intrinsic properties 

of a task, it is recommendable that students have experience with using the 

graphic view for epistemic mediation, prior to working with variable points. 

Students’ knowledge about properties related to variables and algebraic terms, such as 

equality, infinity, and structural relationships can be operationalized in justification 

processes through tasks about variable points. However, tasks that require student to have a 

generalized conception of variable points can prevent students (at a secondary level) from 

exercising RC, which can be addressed by direct action-oriented formulations of 

question instructing students to modify terms in the algebraic expressions. 

Finally, despite parallelism being a known structural relationship for the students, tasks 

with parallel relationships can deflect students to provide justification of a geometric nature 

rather than one related to the variable.  

 

B. “Justified prediction-observation-explanation” tasks (White & Gunstone, 1992) can support 

students in forming claims and engage in justification processes about the dynamic behaviors 

of variable points and engage in justification processes about algebraic relationships based 

on their own knowledge (Kasmer & Kim, 2011; Lim et al., 2010) of properties of the variable 

to justify patterned movements as algebraic relationships.  Predictions of variable points 

containing a constant term along with the variable in the ordered pairs can 

provide students with the opportunity to predict and justify the placement of 

traces as related to the constant. Comparison of two or more points in the 

prediction can engage students to justify the positions of traces as related to the 

differences in algebraic terms. The observe-and-explain phase urges students to 

elaborate and adjust their predictions according to observations. In addition, it is favorable 

to use a dynamic interface for the prediction rather than a paper environment (Noss et al., 

2012), because the dynamic interface allows students to represent variable relationships as 

variable and to predict variable points as both continuous and discrete movement.  

Predictions of variable points in the GeoGebra environment also allow students 

to test constructed points, on top of their prediction, making small differences 

between predictions and tests stand out visually. Expect that students need 

close guidance in prediction tasks as the prediction step can confuse students 

and students might “disrupt” the process by jumping ahead in the task and constructing 

points in the algebra view. 

 

C. Tasks where students create and manipulate symbolic representations that are 

simultaneously graphically represented can serve as a context for conjecturing about intrinsic 
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algebraic properties related to variables. However, the complexity of the representational 

infrastructure of GeoGebra must be considered so that the representations students create 

and manipulate are familiar to them (based on review). This might be obtained with variable 

points, as ordered pairs and simple algebraic expressions are familiar to lower secondary 

students. In addition, using notations of points depending on other points is not advisable 

for lower secondary students. Using the animation feature of the slider can provide students 

with phenomenological impressions of speed as a dynamic property of a variable with a 

coefficient. If the trace function of a point is active, changing the coefficient in a variable point 

can be experienced in terms of the length of the trace and on the intersections of traces to 

indicate the coordinate position when points are equal. Students can also experience 

equality between variable points, as dependent on the distance to an identified 

intersection of traces. Students’ identification of structural relationships 

through the phenomenological impression obtained from the geometric view, 

and through epistemic mediation, can be considered a stepping stone toward 

justifying those relationships in algebraic terms. However, students’ exercise of 

RC as justification also depends on their problem handling competency and 

their symbol and formalism competency. 

In the research question, I ask in what ways, emphasizing that the design and design process has 

materialized in certain ways and not in other possible ways. The following highlights choices taken 

in the design process and discus how these choices have addressed issues concerning RC and DGAE. 

Students often face challenges with a high level of complexity in both reasoning and the use of DGAE. 

In reasoning, this complexity involves understanding the relevant concepts and properties of a 

problem (Duval, 2007). In the DGAE, it consists in understanding the representational structures in 

which they are expressed. Principles A and C have the same normative element of familiarity as an 

approach to overcome the high level of complexity. As a result, they allow students to focus on 

justification processes, but with elements of novelty to progress a need for justification. This is a way 

to approach design that emphasizes the exercise of competency rather than conceptual development, 

in which learning of unfamiliar concepts are the goal.  

In the theoretical foundation (Chapter 2) and in paper 5, I describe Vergnaud’s (1998b) concepts of 

schemes. Particularly in paper 5, I discuss how we may see students’ justification processes in the 

light of possibilities of inference between theorems-in-action about concepts-in-action. In this 

perspective, familiarity means that students have some theorems-in-action about the intrinsic 

properties but must create inferences between theorems-in-action that are particular to the task they 
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are solving. Hence, through the perspective of Vergnaud’s schemes (1998b), the normative theory 

element of familiar concepts and properties in novel problems create possibilities for inference.  

There are two central challenges in design toward such goal: what properties are familiar to the target 

group, and which problems are novel. Concerning the first, the diversity of students’ knowledge is a 

fundamental precondition, so despite the approach of familiar concepts and properties, descriptive 

theory elements are needed to describe what properties are suitable for the target students. The 

generalized conception of variable points is an example of an overly complex property, excluding 

students’ engagement in justification, whereas infinity, limits, and equality are concepts used in 

justification by most students in the experiments.  

The second challenge of novel tasks has been obtained through the microworld. The microworld 

itself has a familiar and novel aspect for the students. As argued in the analytical perspective, the 

ordered pairs are indeed familiar to students, but this was not the case for the variable and algebraic 

terms in this context. This has allowed for the creation of tasks unlike regular mathematical tasks, 

which are novel to all students.  

Design principle B concerns a particular kind of task structure as a way of facilitating justification 

processes, and hence differ from A and C. This reflects a choice in the focus of the design chapter. 

There are other kinds of tasks that I could have emphasized and explored in the principles, e.g., 

construction tasks or pattern generalization tasks. The choice to emphasize “justified prediction-

observation-explanation” as a way to design reflects a personal curiosity of how such tasks might be 

designed in the context of DGAE. More importantly, the task has a strong relevance to the practice 

community in promoting justification in the classroom through a task structure that is adaptable to 

different subjects and environments. Principle B is hence an elaboration of how A and C can be 

operationalized into a task structure.  

6.5.2 The microworld 

We create microworlds with the hope that it makes the abstract world of mathematical concepts 

easier for students to grasp. The microworld of variable points is indeed developed with such intent. 

It builds on the tradition of microworlds to develop visual representations to explore algebraic 

expressions, but contrary to many others (e.g., MiGen and MoPiX), it exploits a regular DGAE 

accessible to students, and it is embedded in the representational structure of coordinate geometry. 

Though the microworld of variable points is designed for students’ exercise of RC, variable points 

hold potential for the exercise of other competencies and learning of basic algebraic concepts. In the 

progression of coordinate geometry, there is a big gap in comprehension and algorithms, from 

placing ordered pairs as points in the coordinate system to the next theoretical step, the distance 

formula or linear function in linear algebra. The microworld of variable points has potential to lessen 
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that gap, as it is an explorative environment where students can progress their understanding of 

algebraic concepts, variables, and terms in the context of the coordinate system.  

6.5.3 Tasks for the exercise of RC in justification 

I have presented two kinds of tasks that have proven to be particularly valuable in the context of 

microworld for students to exercise RC in justification: the “justified prediction-observation-

explanation” tasks and the “equal points” task. However, these two task types have very different 

prerequisites. The first task requires translation between representations in the microworld, while 

the equal points task requires transformation of the symbolic representation to reach an equality 

requirement between two points. Also, they both represent different ways to actuate the dynamic 

properties of variable points.  

The presented tasks are examples of how such tasks can be formulated. However, both can be 

redesigned to present more or less complex problems and focus on different properties. As such, I 

would like to explicate them as types of tasks that invite students to exercise their RC, and as 

particular results of the study.  
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7 RELATING SCHEME-TECHNIQUE AND REASONING COMPETENCY  

In this chapter, I address RQ2: 

What are the relationships between lower secondary students’ scheme-technique 

duality when solving tasks developed for RQ1 in a dynamic geometry and algebra 

environment and their exercise of reasoning competency as justification?  

Recall that when evaluating RC, three dimensions are taken into account: degree of coverage, radius 

of action, and technical level (Niss & Højgaard, 2011, 2019) (see also 0). Coverage pertains to a 

competency’s various aspects, such as actively participating in different forms of reasoning. The 

radius of action encompasses the diverse contexts in which the competency can be applied, spanning 

various domains and social situations. Lastly, the technical dimension addresses the sophistication 

of concepts, theories, and methods. In addressing RQ2, the relationships between students’ scheme-

technique duality and these three dimensions of RC are drawn out by identifying differences between 

student pairs and the progression of instrumental genesis for an individual student. Relevant results 

from papers 3, 4, and 5, as well as additional results, will be presented to draw out these 

relationships. Consequently, the wording in RQ2: “for tasks developed for RQ1” can be concretized 

to the prediction tasks and the “equal points” task presented in chapter 6.  Furthermore, as these 

papers examine the scheme-technique duality (Drijvers et al., 2013) through the notion of 

instrumented justification (IJ), IJ is elaborated in the forthcoming section 7.1 before presenting 

relevant results. 

7.2 delve into results concerning the “equal points” task, and 7.3 into results concerning the 

“Justified prediction-observation-explanation”. Each draws on results from papers but also presents 

additional analysis and results. 7.4 is the second part of the discussion, answering RQ2. 

7.1 THE SCHEME - TECHNIQUE DUALITY AS INSTRUMENTED JUSTIFICATION  
IAME is usually applied to analyze students solving a type of task. For instance, in the case analyzed 

by Drijvers et al. (2013), a student solved quadratic equations using the CAS tool. Thus, typical for 

cases analyzed in IAME, the main goal in students’ schemes is to solve a problem, with associated 

subgoals particular to the process. However, the processes of justification differ as the main goal is 

to change the epistemic value of a mathematical claim that concerns the solution to a problem or 

strategy. Hence, the scheme-technique duality in justification must be reconsidered toward such a 

goal. In Toulmin’s argumentation model (Toulmin, 2003), the goal can be considered related to the 

element “qualifier”, which indicates the perceived probability of the claim. This is the basis for 

reinterpreting the scheme-technique duality using Toulmin’s argumentation model in the creation 
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of an analytical tool (see Figure 22) for IJ processes. In MER, Toulmin’s model is usually used to 

analyze a finished argument or chains of sub-arguments, while the scheme-technique duality is 

expressed in processes. Toulmin’s model is hence adapted to capture the process from forming a 

claim to restating that claim, along with a change in the qualifier when using an artifact. This process 

involves changing the qualifier from ‘possible’ to ‘more possible’, ‘less possible’, ‘true’, or ‘false’. The 

change is obtained by generating data through techniques as evidence to support or refute the initial 

claim. 

The analytical tool highlights this close relationship between data and techniques, correlating a 

technique to the data it produces through connected frames. The schemes (Vergnaud, 1998b) (see 

also section 2.5) that direct and organize techniques contain conceptual elements and rules that 

regulate actions seen as warrants connecting the data to the claim. These warrants can be inferred 

from students’ techniques and verbal expressions (Rezat, 2021). 

Figure 22 shows a generic diagram of the IJ analytical tool as an adaption of Toulmin’s model. 

In continuous sub-processes, the first uttered claim, along with its qualifier, is noted in the 

top right corner in grey, and below is the re-claim with a new qualifier. Finally, the rebuttal 

consists of the limitations of the claim, or counterarguments, as in Toulmin’s (2003) original 

model. 

Based on the analytical tool, IJ is described as: “a process through which a student modifies the 

qualifier of one (or more related) claim(s) using techniques in a digital environment to generate 

and search for data and warrants constituting evidence for such claim(s)” (Paper 3, p. 135; italics 

in original). 

It is important to stress that IJ complies with the theoretical notions of the IAME, which are still 

intact. For instance, epistemic and pragmatic mediations are still considered a part of such processes 

and students’ actions are emphasized as oriented toward goals and subgoals, conforming with the 

notion of scheme.  

Figure 22 ‒ Adaptation of Toulmin’s model into an analytical tool for students’ instrumented justification 
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Paper 4 and paper 3+5 have different perspectives on IJ. Paper 4 explores the nature of students’ 

final arguments in the complete set of data from iteration 2 and 3 of the equal points task (see section 

5.3). The overview of students’ arguments is then used in an analysis and discussion of illustrative 

cases, concerning the nature of arguments and students’ mediations and goals as related to their RC.  

In paper 3 and 5, I investigate singular cases of IJ for in-depth analysis of the processes. Hence, the 

papers provide different types of results to identify relationships between students’ scheme-

technique duality in IJ processes and RC.  

7.2 MEDIATIONS AND TECHNIQUES EMERGING FROM THE EQUAL POINTS 

TASK 
In the following section, perspectives of paper 4 are addressed. First, some results from paper 4 and 

additional data are presented. Then through analyzed I draw connections between students’ 

mediations in the IJ processes, their goals and techniques to the three dimensions of RC.   

7.2.1 Results concerning student’s justifying solutions 

The first set of results stems from paper 4. Table 3, showing students’ answers to the equal points 

task is found below. The answers are grouped according to the final argument (question numbers 

are correlated with how they are presented in subsection 6.3.2). The phrasing of the arguments are 

presented in a condensed form, which allows grouping similar arguments. The grouping provides an 

overview of the number of student pairs that engaged in justification processes about their solutions 

and the nature of their final arguments.  It appears from Table 3 that only some students justified 

their solutions. It is not evident, however, how different pairs of students progressed throughout the 

task, which could provide a more comprehensive understanding of how they exercised their 

reasoning. 
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Table 3 ‒ Grouped student answers for the equal points task from third iteration and the nature of their 
justification referring to either A) an algebraic relationship, P) phenomenological impressions, or N) 
numeric information 

Grouped student answers, n = 18 pairs n 
pair(s) 

Nature:  
A, N, P 

i) Can A1 = B and when? (Yes, when s = 1). Justify your answer. 
Yes, when s = 1, as B = (s,1) and A1 = (1,s), and when s is one, they are both (1,1) 2 A 

Yes, when s = 1 because then both points are (1,1) 1 A 

Yes, when both coordinate sets are (1,1), no justification 3 - 

Yes, as the points cross each other  1 P 

Yes, when s = 1, no justification 3 - 

Irrelevant answer 7 - 
No answer 1 - 
j) Can A2 = B and when? (No). Justify your answer. 
No, as A2 is always one below A1 because of “the -1” (and B = A1) 2 A 
No, as there will always be one point that has a distance to the intersection when the other one is at 
the intersection 

3 P 

No, they are never at the same place at the same time 1 P 
No, no justification 4 - 
Irrelevant answer 7 - 
No answer 1 - 

k) If you change the x-coordinate of A2, is it then possible for A2 = B? 
• If yes, when and why? (Yes, more solutions, e.g., if A2 = (2,s−1) and s = 2) 
• If no, why not? 

Yes, when A2 = (2,s-1), because then both points can have the x-value of 2 when s is 2 2 A 
Yes, when A2 = (2,s-1), because then A2 and B have the same distance to the intersection of the 
trajectories 

1 P 

Yes, when A2 = (2,s-1), because A2 and A1 are then on different trajectories  1 P 
Yes, when A2 = (2,s-1), no justification 6 - 
Irrelevant answer 7 - 
No answer 1 - 
l) If instead, you change the y-coordinate of A2, is it then possible for A2 = B without A2 = A1? 

• If yes, when and why? (Yes, e.g., A2 = (1,2s−1) or A2 =(1, −s −1)) 
• If no, why not? 

Yes, when A2 = (1,2s-1), no justification  1 - 
No, because B always has a distance to the intersection of B and A2’s trajectories when A2 is at the 
intersection  

2 P 

No, because they are equal in (1,1) where A1 = B, and we cannot find a solution where A2 does not 
equal A1  

4 A 

Yes, when A2 = (1,s1) or A2 = (1,s), no justification 2 - 
No, no justification 1 - 
Irrelevant answer 7 - 
No answer 1 - 

 

Table 4 presents additional data for students who justified their solutions to at least one question. 

Each pair’s answers and justifications are color-coded as follows: Correct answer, partly correct 

answer, wrong answer, phenomenological based justification, algebraically based justification.  

By considering justification of an algebraic nature as more complex than those of a 

phenomenological nature, the student’s exercise of RC in the task, across all questions in the equal 

points task, can be qualified. In the table, the pairs of students are arranged according to their 



99 
 

exercise of RC. Pair 1, to the far left, exercises the least developed RC, while Pair 7, to the far right, 

exercises the most developed RC.  

Table 4 - The answers and arguments of justifying students in answering the equal points task iteration 
3. Coding: Correct answer, partly correct answer, wrong answer, phenomenological based justification, algebraically 
based justification   

Pair # 
Question/                    
answer 

Pair 1 Pair 2 Pair 3 Pair 4  Pair 5  Pair 6 Pair 7 

i) Can A1 = B 
and when? 

Yes, when 
s=1 

Yes, when 
both 
coordinate 
sets are (1,1) 

Yes, when 
s=1  

Yes Yes, when 
s=1 

Yes, when 
s=1 

Yes, when 
s=1 

Justification not justified not justified not justified As the points 
cross each 
other  

because then 
both points 
are (1,1) 

As B = (s,1) 
and  
A1 = (1,s), 
and when s is 
one, they 
both are (1,1) 

As B=(s,1) 
and  
A1 = (1,s), 
and when s is 
one, they 
both are (1,1) 

j) Can A2 = B 
and when? 

No No No No No No No 

Justification There will 
always be 
one point that 
has a 
distance to 
the 
intersection 
when the 
other one is 
at the 
intersection 

not justified There will 
always be 
one point that 
has a 
distance to 
the 
intersection 
when the 
other one is 
at the 
intersection 

No, they are 
never at the 
same place at 
the same 
time 

 A2 is always 
one below A1 
because of 
the -1" and B 
= A1 

There will 
always be 
one point that 
has a 
distance to 
the 
intersection 
when the 
other one is 
at the 
intersection 

A2 is always 
one below A1 
because of 
"the -1"  

k)Can A2 = B 
and when? 
x-coordinate 

Yes, when 
A2= (2,s-1)  

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Justification not justified not justified Because A2 
and A1 are 
then on 
different 
trajectories  

not justified Because then 
A2 and B 
have the 
same 
distance to 
the 
intersection 
of the 
trajectories 

Because then 
both points 
can have the 
x-value of 2 
when s is 2 

Because then 
both points 
can have the 
x-value of 2 
when s is 2 

l)  Can A2=B 
and when? 
y-coordinate 

Yes No No No No No No 

Justification not justified Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because B 
always has a 
distance to 
the 
intersection 
of B and A2’s 
trajectories 
when A2 is at 
the 
intersection  

Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because B 
always has a 
distance to 
the 
intersection 
of B and A2’s 
trajectories 
when A2 is at 
the 
intersection  

7.2.2 Analysis of goals, mediation and techniques and their relationships to RC 

The analysis points to differences between the seven pairs, which is then related to one of the three 

dimensions of the RC to establish relationships between students’ IJ processes and the RC.  
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Based on Tables 3 and 4, the following three analyses explore relationships between students’ goals 

in the mediation of artifacts in IJ processes and their RC.  

Goal of tool use as related to degree of coverage  

The close relationship between RC and problem handling in justification (see section 2.3) is 

significant in the following analysis. 

In the justification of a solution, but also during the problem-solving, students enter IJ processes. 

Thus, in IJ there is an interplay of both problem handling competency and RC. Delineating which 

processes relate to which is significant to provide an answer to the RQ. Drawing on the notion of 

schemes that organize goal-oriented activities (Vergnaud, 1998b), the two competencies can be 

delineated with respect to the goal of the student’s activity, as either reaching a solution to a given 

problem or changing the epistemic value of a claim stated during the problem-solving process or as 

a solution. Some of the students engage in pragmatic and epistemic mediation toward the goal of 

problem solving, but rarely or never toward justifying their solution. Hence, they provide no, or only 

very few, justifications for their solutions, e.g., Pairs 1 and 2 in Table 4. These two pairs are students 

who can solve most questions but not necessarily justify their answer. They might exercise 

justification during their problem solving, but we cannot conclude that they do based on the results. 

However, we can say that the students who justify their solution display a more developed degree of 

coverage than students who do not.  

As the degree of coverage is the aspect of RC that students exercise, we can consider students’ degree 

of coverage in relation to their goal of using an artifact. The goal must be aimed at changing the 

epistemic value of a claim within a problem-solving context. It follows that especially in justification 

processes, students must shift their goal from problem-solving towards justification.  

Pragmatic and epistemic mediation as related to radius of action 

This analysis identifies differences in students’ mediations of artifacts in the algebra view and the 

graphic view, which is then related to the radius of action of RC.  

In order for students to understand how their techniques influence the dynamic behavior of variable 

points, they must comprehend the how the representation of the objects in the graphic view relate 

to the variable points in the algebra view. This comprehension requires epistemic mediation of both 

the graphic view and the algebra view. In general, for students to put forward arguments that relate 

algebraic properties to the representation in the graphic view, they must be able to use pragmatic 

and epistemic mediation of both the graphic view and the algebra view toward the goal of 

justification. The results in Tables 3 and 4 show that only a small number of students connect the 
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phenomenon they observe in the graphic view to the coordinate set and the algebraic expressions in 

the algebra view regarding their solution. Pairs 6 and 7 do so most consistently of the seven pairs. 

The students who primarily present phenomenologically natured arguments (Pairs 3 and 4) mostly 

attain epistemic mediation of the graphic view. The input field and the slider tool in the algebra view 

are only used to produce data, so the students only attain pragmatic use of the algebra view. This is 

further nuanced by two cases of phenomenologically natured arguments, also presented in paper 4. 

They differ by the fact that in one case, students justify with regard to the intrinsic properties 

(Lithner, 2008) of the task, where the students in the other case do not. Consider the differences in 

the following two examples, both in the context of question K.  

Pair 5: “Yes, A2 = (2,s-1), because then A2 and B have the same distance to the intersection of the 

trajectories.”  

Pair 3: ‘Yes, when A2 = (2, s-1), because then A2 and A1 are on different trajectories.  

The argument of Pair 5 considers the intrinsic properties, such as equality of A2 and B at their 

intersection of trajectories, and indirectly relates s-1 to A2’s distance to that intersection.  

Pair 5’s justification indicates that students understand that the constant in the coordinate 

set corresponds to the position of the trajectory of the point, but they fail to relate it to 

equality, in general and between the relevant points B and A2. As argued in paper 4: 

The next step is for the students to instrumentalize components of the algebra view 

for justification. Or in other words, they must evolve their use of the algebra view to 

also encompass epistemic mediation for the goal of justifying their answer. In that 

sense, some of the justifications that rely on phenomenological experiences can be a 

steppingstone for students exercising their RC in the algebraic domain (p.30). 

On the contrary the argument of Pair 3, though also phenomenological in nature, does not relate to 

intrinsic properties of the task. Thus, even though the students do refer to the coordinate set, these 

students struggle to identify the core concepts of the problem and exercise a less developed RC. 

Finally, Pairs 1 and 2 mostly did not justify their solutions. It is, however, possible that they have a 

pragmatic mediation toward justification. If considering their solution as evidence, they are 

performing verification, which is a pragmatic use of the algebra view and graphic view toward the 

goal of justifying (elaborated in following section).  

By this analysis, we can draw out differences in students’ mediations of the graphic view and algebra 

view. 
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• No epistemic mediation toward the goal of justification. Possibly, there is pragmatic use of 

the algebra view and graphic view toward the goal of justification, such as verification.  

• Pragmatic mediation in the use of artifacts in the algebra view, but epistemic mediation of 

the graphic view toward the goal of justification. This is further nuanced by the mediation 

regarding intrinsic properties or not.  

• Both pragmatic and epistemic mediation of the algebra view and graphic view.  

The radius of action relates to the situations and domains students exercise the competency in.  

Hence, delineating IJ during problem-solving and justification of the solution is related to radius of 

action. Considering the different views of GeoGebra as different contexts, i.e., the graphic view and 

the algebra view each representing different mathematical domains, students’ pragmatic and 

epistemic use of specific artifacts in different views relates to the radius of action of their RC.  

Finally, there are nuances of students’ epistemic mediations. In IJ processes, pragmatic mediations 

are the production of data through techniques, and epistemic mediation is the interpretation of data 

through warrants. The quality of the epistemic mediation depends on whether the mediated involves 

intrinsic properties. This is, however, related to students’ technical level, which I analyze in the 

following section.  

7.2.3 Students’ techniques in the exercise of RC 

Up until now, the analysis of student activities and their goals, along with their mediations, has been 

conducted on the basis of Tables 3 and 4, and in relation to the degree of coverage and radius of 

action. The third dimension, which is the technical level, requires data on the specific techniques 

used. To maintain the accuracy and relevance of the analysis, the results related to this dimension 

are presented in a separate section. Further analysis will be provided after this presentation. 

Additional findings 

Describing students’ techniques of both the input field and slider tool provides further evidence of 

how access to construction and manipulation of algebraic expressions in conjunction with the slider 

tool relates to students’ RC. I focus particularly on question K and L of the equal points task, as they 

involve techniques in the input field of the algebra view in combination with the slider. Table 4 

presents sequences of techniques, considered as the generative aspect of schemes (Vergnaud, 

1998b), across the seven pairs.  

For question K, “Can A2 = B if you edit the x-coordinate of A2?”, students must change the numeric 

value to either 2 or s. By scrutinizing which techniques students employ to reach the solution, and in 

some cases a justification, the following sequences appear:  
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TE,V,J : Edit the value of x-coordinate to 2, drag slider for verification, drag slider for IJ (n=4) 

TE,V:     Edit value of x-coordinate to 2, drag slider for verification (n=2) 

TE:    Imagine editing the value of x-coordinate to 2 (n=1) 

In Table 5, the sequences of techniques are put in relation to the student pairs in Table 4. 

Table 5 – Techniques of 7 pairs of students answering question k). Coding: Correct answer, partly correct 
answer, wrong answer, phenomenological based justification, algebraically based justification   

Pair # 
 

Pair 1 Pair 2 Pair 3 Pair 4  Pair 5  Pair 6 Pair 7 

Can A2=B? 
x-coordinate  

Yes, when 
A2= (2,s-1)  

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Yes, when 
A2=(2,s-1) 

Technique TIE TE, V  TE, V, J  TE, V  TE, V, J  TE, V, J TE, V, J 

Justifi-
cation 

not justified not justified Because then 
A2 and A1 
are on 
different 
trajectories  

not justified Because then 
A2 and B 
have the 
same 
distance to 
the 
intersection 
of the 
trajectories 

Because then 
both points 
can have the 
x-value of 2 
when s is 2 

Because then 
both points 
can have the 
x-value of 2 
when s is 2 

 

For question L, “Can A2 = B if you change the y-coordinate of A2?”, a successful technique is to 

multiply with a coefficient of 2 without deleting the term. By scrutinizing which techniques the seven 

pairs of students in Table 4 employ to reach the solution, and in some cases a justification, for 

question L, the following sequences appear:  

TT, V, J:  Repeatedly edit the term at random and drag slider for verification. Drag slider for IJ 

(n=5) 

T-T ,c→1,V, J:  Delete the term and repeatedly edit the coefficient by approaching one, drag slider for 

verification, drag slider for IJ (n=1) 

T-T, C→1, V:  Delete the term and repeatedly edit the coefficient by approaching one, drag slider for 

verification (n=1) 

TC, V:  Keep the term and edit the coefficient, drag slider for verification (n=1) 

In Table 6, the sequences of techniques are put in relation to the student pairs in Table 4. 

Table 6 -  Techniques of 7 pairs of students answering question l). Coding: Correct answer, partly correct 
answer, wrong answer, phenomenological based justification, algebraically based justification   

Pair # Pair 1 Pair 2 Pair 3 Pair 4  Pair 5  Pair 6 Pair 7 
can A2=B? 

y-coordinate  
Yes No No No No No No 
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Techni-
que(s) 

T-T, C→1, V 
 
TCV 

TT, V, J TT, V, J TT, V, J T-T, C→1, V, J TT, V, J TT, V, J 

Justification not justified Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because B 
always has a 
distance to 
the 
intersection 
of B and A2’s 
trajectories 
when A2 is at 
the 
intersection  

Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because they 
are equal in 
(1,1) where 
A1 = B, and 
we cannot 
find a solution 
where A2 
does not 
equal A1  

Because B 
always has a 
distance to 
the 
intersection 
of B and A2’s 
trajectories 
when A2 is at 
the 
intersection  

 

Analysis 

As in the previous two analyses, I will identify differences between the pairs of students, in this case 

concerning students’ use of techniques, and point to relationships to the technical dimension.   

In order to solve question K, the required technique is well within the students’ capabilities. Table 5 

shows that all students who answered the question provided a correct solution by changing the x-

value to 2. The only difference between the pairs lies in the use of the slider. All but one pair used it 

for verification, while four pairs used the slider to justify their solution. Obviously, the students who 

use the slider for justification have a more developed RC than those who do not. However, this 

concerns mediation, which is related to the radius of action. Rather, differences in the technical level 

concern the complexity of the techniques the pairs use in the pragmatic and epistemic mediation 

toward justification. The students’ answers to question K indicate that determining the correct value 

of the constant term is within their technical level. Pair 1 stand out, however, as they only imagine 

the technique and do not use the slider for verification.  

How can we consider imagined technique in terms of IJ? Imagining data that the technique would 

produce can be considered a pragmatic mediation. If the imagined data are based on correct 

warrants, it indicates that the technique is so familiar to the students that they do not need to carry 

it out. If so, the imagined technique must be well within the students’ technical level of problem-

solving. If the students also consider imagined data to evidence of a claim, in this case that the value 

2 in the x-coordinate results in A2 = B when s = 2, then they also imagine verification. In such 

perspective, the imagined technique of Pair 1 display some level of technical ability toward the goal 

of justification. On the other hand, the pair is not taking advantage of the feedback that GeoGebra 

can provide to confirm the results, and do not further justify their answer.  

Contrary to question K, students struggle to find a solution to question L. Multiplying with a 

coefficient without deleting the term generally appears to be at the limits of the students’ technical 

level of problem solving.  
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Most students (n=5) are inclined to edit only the term and do not consider other techniques. 

Editing the coefficient is outside of their technical dimension for problem solving. The students 

who do edit the coefficient (n=2) delete the term first.  

The distinction between the pairs’ technical level is less clear in this case, as students struggle to find 

a successful technique. Still, multiplying by a coefficient is more advanced than adding or 

subtracting. In addition, there is no (visible) coefficient to edit, so the students must have the 

knowledge of coefficients to use the technique, whereas the term is already created and can be edited. 

However, the students who use the slider for justification, and hence justify the failure of the 

technique they used in the algebra view, have a more advanced technical dimension than those who 

do not, cf. the sequences TT, V, J and T-T,C→1,V, J.  

Verification is part of the sequence of techniques for all pairs, apart from Pair 1 for question K who 

only imagine the technique and the solution. Common to Pairs 2 and 4 in question K is that their 

sequence of techniques ends with dragging the slider for verification. The students are taking 

advantage of the feedback GeoGebra provides in the graphic view to confirm the solution. 

Verification is related to the epistemic value of a claim and is an exercise of RC. In the perspective of 

IJ, the students do produce data in support of the claim that that A2 = B when the x-coordinate is 2. 

As we know from Hanna (2000), reasoning has different functions; verification is one of them, 

explanation is another. It does, however, reflect the difference between pragmatic and epistemic 

mediation concerning the use of artifacts. Verification only confirms or rejects with respect to an 

expected solution. The student can only consider why through epistemic mediation. The educational 

value (Artigue, 2002) of verification is therefore low. As indicated in the analysis of mediation, the 

explanatory justifications entail intrinsic properties (Lithner, 2008) and have a higher education 

value.   

Pairs 2‒7 can also be divided with regard to their justification. One group justify their answer by 

referring to structural implications of editing the term: “Because B always has a distance to the 

intersection of B and A2’s trajectories when A2 is at the intersection”, which is a phenomenological 

justification. 

The other group justify based on the failure of producing a solution where A2 = B: “Because they are 

equal in (1,1) where A1 = B, and we cannot find a solution where A2 does not equal A1”. This is an 

algebraic justification. In this case, the phenomenological justification is more advanced than the 

algebraic. Even though both justifications refer to equality as related to the intersection of 

trajectories in (1,1), the phonological justification relates the applied technique to the distance to the 

intersection. Hence the evidence for their claim is the structural implication of the technique they 

used. Contrarily, the algebraic justification uses the failure to produce equality as evidence of the 
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claim. In this case, therefore, the phonological justification is more sophisticated than the algebraic 

justification.  

Based on the analysis, there is no correlation between the use of a particular technique by students 

in the algebra view and the sophistication of the justification they can produce. It is possible that 

students can use a technique successfully for problem-solving but not for justification, and vice versa. 

The slider is a crucial tool in instrumented justification, and students’ use of it alternate between 

verification and justification, which reflect pragmatic and epistemic use respectively. The technical 

level of students’ exercise of RC in IJ is, therefore, related to the sophistication of the justification 

that the student can consider a used technique, rather than the complexity of the technique itself. 

This highlights the central importance of using the slider to produce data and interpretation through 

warrants in the students’ exercise of RC in IJ processes that include the algebra view. 

7.3 INSTRUMENTAL GENESIS RELATED TO RC IN PREDICTION TASKS 
In Paper 5, we meet the pair Rio and Lev and explore their IJ process for the first prediction task, 

capturing their progression through three different techniques: plotting and dragging singular 

points, tracing points as trajectories of variable points, and drawing trajectories with the pen tool. 

Their progression of techniques and Rio’s conceptual development that unfold in their IJ process is 

most interesting as a minute window to an instrumental genesis process (Trouche, 2005) in its very 

beginning. As argued in paper 5, early instrumental genesis is characterized by unstable schemes 

with irregular behavior, incorrect theorems-in-action, and inefficient rules-in-action that, over time, 

will stabilize into an invariant behavior. This is rarely addressed in studies that search for and 

describe the invariant behavior in students’ developing schemes (e.g., Roorda et al., 2016) or patterns 

in schemes across groups (e.g., Pittalis & Drijvers, 2023).  

Lev and Rio also participate as a pair in iteration 3, providing the opportunity to follow their 

instrumental genesis across several prediction tasks. 

In this section, I portray how Rio’s instrumental genesis progresses in the second prediction task of 

iteration 2, and the prediction tasks of iteration 3. His instrumental genesis provides a context to 

discuss how instrumental genesis in IJ processes is also reflected in students’ RC.   

Rio’s justified prediction, test and explanation of D = (s,s) 

Rio’s and Lev’s solution to Q1‒3 of the third set (see Figure 18) is analyzed using the IJ model 

introduced in paper 3 and 5. As in paper 5, Rio is the predominant solver and the most articulate, 

whereas Lev is a silent observer. Rio is controlling the computer. It is his IJ process and instrumental 

genesis that we can consider. 
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In the analysis, I refer to warrants from paper 5, where the label WV covers warrants concerning 

variables, and WP are warrants concerning ordered pairs or points in the coordinate plane. In 

transcripts, techniques and gestures are given in square brackets and clarifying comments are given 

in round brackets. 

In the first IJ subprocess (see Table 7), Rio forms the prediction in subprocess 1a as Claim 1 (Figure 

24),  justifies it in subprocess 1b (Figure 23), and forms a written argument.  

In the second IJ subprocess, Rio and Lev test the prediction and adjust their prediction leading to 

claim 2. 

Table 8 and Figure 25).  
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Table 7 ‒ Instrumented justification sub-process 1a and 1b 

 

1 Rio [Places point in (1,1) with point tool] 

 
2 Rio It changes like this [picks pen tool]  

3 Rio [Draws trajectory from (1,1) → (0,0) → (5,5)] 

 
4 Rio Agree?  

5 Rio Because when s is four, then it is also four here 

[moves cursor to 4 on y-axis, then to (4,4), and then 

to 4 on x-axis.] 

 

6 Rio Drags canvas down and continues to draw a 

trajectory from (5,5) → edge of view at (6,6)] So, it 

goes on like this, do we agree? 

 

7 Rio It’s (s,s). So, if s is zero, it is (0,0), (1,1), (2,2) [while 

pointing cursor at positions]. 

 

8 Rio Mumbles (inaudible) [Selects the point in (1,1) and 

then deletes it]  

 

9 Rio Reads answer guide and writes: 

We know that D can only be called (a number, the 

same number). This means that D, cannot be called 

(2,1), but can be called (3,3). That’s why D moves 

like this. 
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Figure 23 ‒ Instrumented justification sub-process 1b through the lens of the analytical tool 

Figure 24 ‒ Instrumented justification sub-process 1a through the lens of the analytical tool 
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In the second IJ subprocess, Rio and Lev test the prediction and adjust their prediction leading to 

claim 2. 

Table 8 ‒ Instrumented justification sub-process 2 

  

 

 

10 Rio Construct D = (S,S) and drags slider for S back and 

forth.  

 

 

11 Lev Exciting  

12 Bot

h 

Observe the movement of D moving (-5,-5) ↔ (5,5)  

13 Rio Actually, we did not quite say that.  

14 

 

 [Scrolls back to the GeoGebra app used for the  

prediction and draws (0,0) → (-3,-3).] 

 
15 Rio Otherwise, it does as we thought  

Figure 25 - Instrumented justification sub-process 2 through the lens of the analytical tool 
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Rio’s instrumental genesis progresses toward drawing the prediction with a pen tool. He starts by 

plotting a point in (1,1), which is the very same position he regarded as the “staring point” in the first 

prediction, presented in paper 5. He then continues to draw from this point toward zero, and then 

toward (5,5) at the edge of view, implying that it continues infinitely in a positive direction. This is 

coherent with warrants from the previous prediction. Rio then deletes the plotted point. This can 

indicate that he no longer considers points and warrant WP1 relevant to the prediction. Rio’s 

drawing scheme for predicting variable points is stabilizing.  

Another indication of Rio’s scheme at these points is that he does not prolong the trajectory of the 

prediction into the negative space prediction in subprocess 1a and 1b, similar to the prediction in 

paper 5. Therefore, although Rio did eventually extend the trajectory into the negative region in the 

paper 5 prediction, Rio has not fully accommodated WP7 and WV8 into his scheme yet. In this 

second prediction task, he is confronted with the trajectory of A2 also moving into negative space in 

the test, and he adjusts the prediction accordingly. Concerning RC, negative values are not fully part 

of Rio’s technical dimension, and Rio uses numeric examples to justify the generalized pattern of 

movement. In the written answer, however, his prediction concerns properties of the variable s, as it 

reoccurs in the ordered pair. In addition, he shows both pragmatic and epistemic mediation of the 

graphic view and the algebra view toward justification.   

Rio’s justified prediction, test, and explanation of A1 =(1,s) and A2 = (1,s-1) 

One and a half year later, in iteration 3, Rio and Lev are once again pairing up. As time has passed, 

they have possibly progressed in both competencies and conceptual knowledge. To be concise, I 

merely describe their IJ process in predicting, justifying, and testing A1 = (1, s) and A2 = (1, s-1). See 

the task in Figure 20 and Appendix B.  

In predicting the dynamic behavior of both A1, the pair uses the pen tool for drawing the trajectory 

in the coordinate plane, including negative values. This time, the drawing shows the marks left as 

they mimic how the point will continually move back and forth along the y-axis.   
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In the prediction of A1, Rio claims that “it can only move up and down along the y-axis” and justifies 

this claim thus: “because it is only the y-value that varies”.   

In iteration 3, the students are also asked to draw the trace of the points. This confuses Rio, who 

argue that point A1 moves infinitely. After testing point A1, Rio realizes that as the variable is 

controlled by a slider, it is limited to [-5, 5]. Rio then argues that since the y-coordinate is one lower 

for A2 than A1, so is the trace. They do not draw the traces but construct and test A2 to verify the 

claim.  

The IJ processes in the third iteration indicate a stabilization of Rio’s drawing scheme for predicting 

variable points. The are no points used in the prediction, and the drawing also expresses the 

oscillating behavior of dynamic points. Initially, the scheme includes the warrants WV8: “The 

variable can infinitely increase and decrease”, and WP7: “An ordered pair with a variable 

corresponds to an infinite set of points on a trajectory in the coordinate plane”. Those warrants are 

challenged by the focus on traces in the third iteration. Hence, Rio must adjust his scheme for 

predicting variable points to include the fact that the variable has the limits [-5, 5], and that such 

limits are particular to the artifact and differ from mathematical theory. In doing so, Rio’s aids and 

tools competency becomes relevant to him, as he can distinguish between properties specifically 

related to the tool in use and general mathematical theory.  

As for RC, Rio has progressed. His justification no longer includes numeric examples, the properties 

of the variable as a generalized number is considered sufficient. In addition, the negative space is 

included effortlessly. This indicates a development in the technical dimension as the sophistication 

of the argument has advanced. Rio is still able to use both pragmatic and epistemic mediation in 

relating the graphic view to the algebra view in the test phase, which provides the opportunity for 

Rio to progress his scheme.   

Figure 26 - Lev and Rio’s prediction of A1 =(1,s) 
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7.4 DISCUSSION, PART 2: RELATING THE SCHEME-TECHNIQUE DUALITY TO 

STUDENTS RC 
This chapter elaborates on the relationships between the three dimensions of RC and students’ 

scheme-technique duality in instrumented justification. In response to the research question, the 

relationships are summarized and discussed in relation to existing research on justification, the use 

of digital technologies, and student progression in RC in IJ. 

The degree of coverage relates to students’ active participation in IJ processes. Active participation 

implies a shift in students’ aim, from problem-solving toward changing the epistemic value of claims 

facilitated by a digital artifact. Such change is obtained by finding and generating data and warrants. 

By defining IJ processes, the study contributes with an aspect of RC concerning a concrete form of 

reasoning. Furthermore, it suggests distinguishing between the mathematical competencies of 

students working with digital tools by determining the goal of each student’s activity. 

The radius of action has several relations to students IJ processes. Firstly, it refers to the range of 

tasks for which students engage in IJ. Prediction tasks and the “equal points" task are examples of 

the breadth of tasks. Secondly, it involves the contextualization of claims that are being justified. 

Students engage in IJ by either regarding claims formulated during problem-solving or claims that 

relate to proposed solutions to mathematical problems. Thirdly, it encompasses the variety of 

artifacts within the software that students can use for IJ within and across various mathematical 

domains. Using artifacts for IJ involves the data production through pragmatic mediation and data 

interpretation through epistemic mediation. 

The technical level means the complexity of techniques used or imagined and the sophistication of 

justifications. It is important to emphasize that the complexity of techniques does not necessarily 

correlate with the sophistication of justifications and vice versa. The techniques are related to 

students’ schemes and their experience of the efficiency of both rules-of-action and the artifact itself 

(paper 5). Imagined techniques can reflect a mastery of techniques if students can accurately 

envision the data they yield. The sophistication of justifications is primarily tied to a student’s grasp 

of underlying concepts and intrinsic properties, as expressed through warrants. Secondarily, the 

nature of the justification as either phenomenological or knowledge-based (in this case algebraic 

knowledge) also influences the quality of justification. It is worth noting that in an educational 

setting, the level of sophistication of verification is comparatively lower than explanatory 

justification. Therefore, students who use the slider tool for both verification and justification 

exercise a higher technical level compared to those who only use it for verification. This underscores 

the importance of a student’s radius of action when employing the slider tool in conjunction with 

other artifacts from the algebraic view. 
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In IJ processes, students’ conceptual knowledge is expressed in warrants when they identify, 

interpret, and relate the data to the claim through epistemic mediations, which are related to the 

students’ radius of action. Furthermore, the sophistication of justification also relates to students’ 

conceptual knowledge, which concerns the intrinsic properties to qualify the mediation and how they 

are used in inference between theorems-in-action. Here we see how two dimensions, the radius of 

action and the technical level, are related through students’ epistemic mediation expressed in 

warrants. This relationship is in accordance with IAME, where students’ knowledge of concepts, as 

well as artifacts, is considered influential to their use of a tool (Trouche, 2005), and it concerns the 

scheme-technique duality. 

Recognizing the connection between students’ scheme-technique duality and the three 

dimensions of RC leads to an important inquiry: How can we aid students in developing their 

RC in IJ processes? To address this, I will explore different perspectives on students’ 

advancement in IJ, some of which stem from issues raised in the papers. 

In paper 5, I address the critical issue concerning students’ conception of variable points: 

…the translation of representation, such as the one-to-one mapping of terms, which 

Duval (2006) problematised in relation to dynamic environments. In this case, how 

do the students perceive A and B in the final prediction? Do students perceive A and 

B as particular points that move, or have they objectified A and B as structural 

patterned movement or, possibly, a hybrid of the particular and generalized? Such 

questions could be addressed by observing the students’ progression in the prediction 

of other variable points. (p. 24) 

Students’ development toward a generalized conception of variable points in the exercise of RC 

concerns their technical dimension. By analyzing Rio’s instrumental genesis throughout the 

prediction tasks, there are three stages in the conceptual progression from a discrete to a continuous 

understanding of variable points. 

At the initial stage, students begin by assigning a value to the variable and creating individual points 

that can be manipulated across the coordinate plane to assume other values of the variable. This 

scheme, with its discrete notion of variable points, uses numerical values as data to support a claim 

about structured, patterned movement. This stage is crucial as it allows students to gain experience 

with “the one-to-one mapping of terms”, which Duval (2006) highlighted as potentially challenging 

for students in dynamic environments. Therefore, the first stage plays a pivotal role in establishing 

a coherent understanding of the variable as a generalized number, laying the groundwork for 

reasoning about variables. 
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As students’ progress, they reach an intermediate stage where the scheme incorporates a hybrid of 

continuous and discrete conceptions. This is evident in Rio’s prediction that point D = (s, s). While 

numeric positions of points are still used as data, the structured movement is considered continuous 

in the drawn trajectories. Rio constructs a point but has no further interaction with it, and the actual 

prediction is drawn with the pen tool. However, the justification still involves data on numeric values 

and positions. This stage is supported by the graphic representations of variable points, where the 

variable point is represented both by an actual point on the coordinate plane and its structured, 

patterned movements. Therefore, variable points serve as a stepping stone for students to justify 

their reasoning with regard to variable properties, a unique learning opportunity that is not readily 

available in traditional pen-and-paper environments (Noss et al., 2012).  

The third stage marks a significant milestone in students’ development toward a generalized 

conception of variable points. At this stage, students represent variable points by drawing infinite or 

limited trajectories. This scheme, with its continuous understanding of variable points, uses the 

variable as a generalized number to support a claim about structured, patterned movement. We 

observe this third stage in Rio’s prediction that A1 = (1, s). Advancing to the third stage requires the 

ability to discern the constraints of the slider tool on the variable points in GeoGebra from 

mathematical theory, indicating a deeper understanding of the concept. 

In instrumental genesis, the student’s knowledge of an object and its artifact influences the 

progression of instrumental genesis in IJ processes, which also leads to a progression in the student’s 

conceptual understanding and RC. In paper 5, I demonstrate how instrumental genesis in IJ 

processes is advanced due to the inefficiency of applied rules-of-action (Vergnaud, 1998b) and the 

constraints of an artifact, requiring it to be consistent with effective rules-of-actions to produce data. 

It is important to note that what is considered efficient or inefficient is relative to the student. To 

facilitate the progress of students and support their conceptual understanding, it is necessary to 

address this relativity and encourage their progression from techniques they still consider effective. 

In the equal points task, many students limited themselves to using only one technique in question 

L, resulting in a lack of progression in their instrumental genesis. As explained in paper 4, when 

students realize that a technique did not produce equality, they gave up and did not attempt to find 

a different solution. This led to the justifications of Pairs 2, 4, 5 and 6 in question L (Table 6). The 

question is at the limits of the students’ technical abilities, so how do we support them in progressing, 

rather than resorting to one single technique?  

From a task design perspective, how can we support students who are at their limits of their technical 

abilities in progressing, instead of relying on one technique? On two occasions during classroom 
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experiments, I caught students failing with their technique and urged them to try another technique 

by hinting that it is possible for A2 = B, indicating the value of the claim.  

Implementing such a solution in a classroom setting would be impractical as it would require the 

teacher to closely monitor students in order to intervene at the appropriate time. Nevertheless, the 

approach demonstrates that indicating the epistemic value of a claim can prompt students to reflect 

on the inefficacy of their technique or selection of artifact. From the perspective of task design, it 

may be advantageous to include an indicator of epistemic value. Instead of asking “Can A2 = B if you 

change the y-coordinate?”, a question indicating an epistemic value could be: “By altering the y-

coordinate of A2, A2 can equal B in a single point. How many solutions can you find? Explain why 

your solution(s) lead to equality.” This way of posing a question adheres to the direct wording of the 

questions implemented in iteration 3, which directs students’ attention toward fruitful actions 

without providing the answers. Additionally, it emphasizes the significance of forming questions, 

particularly when learners are grappling with challenging concepts.  

Both KOM and IAME have an individualistic perspective, which can sometimes conflict with the 

more communal approach to reasoning and justification (e.g., Jeannotte & Kieran, 2017; Yackel & 

Cobb, 1996). Typically, arguments are evaluated based on generally accepted truths, or key ideas 

within the community, whether it be the classroom or the broader mathematical community. 

However, IJ takes a different approach. Instead, it considers the change in epistemic value from the 

perspective of the student, aligning with Lithner’s (2008) description of reasoning as 

the line of thought adopted to produce assertions and reach conclusions in task 

solving. It is not necessarily based on formal logic, thus not restricted to proof, and 

may even be incorrect as long as there are some kinds of sensible (to the reasoner) 

reasons backing it. (p. 257). 

The IJ process places a crucial emphasis on the knowledge and interpretations of the individual 

student. This necessitates a student-centered approach that values the student’s rationales over their 

adherence to mathematical theory. IJ provides an analytical tool that map how students pursue the 

goal of justification while using tools. This student-centered perspective advocates for an inclusive 

view of students’ use of tools as an exercise in RC. 

Hence, the approach taken by IJ acknowledges the epistemological gap, identified by Sabena et al. 

(2014), where teachers may expect a theoretical argument, while students approach their answers 

experimentally. The student-centered approach embraces students’ inclination to rely on empirical 

or phenomenological knowledge. However, this perspective has its limitations, as it only allows for 

justifications based on data and evidence that the students can produce themselves. This 

underscores the importance of the communal aspect of justification as a practice. Other positions on 
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justification (e.g., Dreyfus, 1999; Jeannotte & Kieran, 2017; G. J. Stylianides, 2008; Wood, 1999; 

Yackel & Cobb, 1996) emphasize that certain types of knowledge and arguments are more valuable 

than others, and that developing the communal understanding supports the development of 

students’ RC. Therefore, when supporting students’ progress in justification, it is crucial to consider 

the communal perspective.  

The notion that IJ is solely individualistic may be nuanced when considering data analyzed with the 

IJ tool, which involves pairs of students. This naturally resulted in students sometimes disagreeing 

or having to explicate their reasoning and understanding. In applying the analytical tool, this was 

handled by labelling warrants as specific to a certain student (examples are found in papers 3 and 

5). In those cases, the resulting data are the same for each student, but the warrants by which the 

data are perceived and interpreted as evidence differ between the pairs of students and are 

negotiated between students. 

Thus, concerning the sophistication of justification, the warrants must be challenged and negotiated 

in the communal context. Some have suggested that having students observe invariance while they 

manipulate objects in DGAEs  (e.g., Olive et al., 2010) can potentially progress them from 

experimental to theoretical mathematics. However, if the warrants must be challenged, such 

observations alone are not sufficient to advance to theoretical justification. Future research on IJ 

could explore how students’ warrants can be challenged so that the sophistication of their 

justification progresses.  

In conclusion, this chapter has shed light on the complex relationships between students’ scheme-

technique duality and the three dimensions of RC in instrumented justification. Moreover, it 

highlights the importance of conceptual knowledge and epistemic mediations in students’ 

development of RC in IJ processes. By identifying, interpreting, and relating the data to the claim 

through epistemic mediations, students can express their conceptual knowledge in warrants and 

exercise their RC. 

Finally, this chapter asks how to aid students in developing their RC in IJ processes. By exploring 

different perspectives on students’ progression in IJ and addressing critical issues related to their 

conception of variable points, we can better understand the challenges and opportunities for 

improving students’ performance in this area. 
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8 LINKING RC AND IAME 

This chapter addresses RQ3:  

Which theoretical links can be established between Reasoning Competency and the 

Instrumental Approach to Mathematics Education from the theoretical developments 

of the study?  

This chapter consolidates the various theoretical considerations explored throughout the study and 

elaborates the theoretical developments, struggles and transitions in focus. The objective is to 

expound the progression of the analytical perspective (McKenney & Reeves, 2018) of the design 

research process. This will consider the broader context of networking for advancing KOM and IAME 

by suggesting potential links between the two perspectives.  

The chapter falls within four parts. 8.1 elaborates the rationales for the developments of the 

analytical tool for IJ, which assist in linking the two frameworks in a networking perspective. 8.2 

describe the development an analytical tool, and 8.3 elaborate on further refinements of this tool, 

including discussions of how the developments are potential links for networking. 8.4 are the final 

part of the discussion, addressing the research question and revisiting notions from the theoretical 

framework. 

The theoretical developments are illustrated progressively, and the reader should be aware that each 

illustration only conveys a particular focus at a particular moment in progression to visualize the 

points made.  

8.1 A NEED FOR AN ANALYTICAL TOOL 
In the first iteration of education design research, the need for an analytical tool emerged through a 

parallel analysis of the students’ solutions to tasks, operationalizing the IAME and the KOM 

framework.  A parallel analysis means to apply (at least) two different theoretical perspectives to the 

same set of data and discuss how each perspective illuminates the research problem and relates to 

the other one (Maracci, 2008). It is a method within the coordinating and combining categories of 

NT strategies (Prediger, Bikner-Ahsbahs, et al., 2008). 

The aim of the parallel analyses was to capture students’ work with tools in justification, and the 

hypothesis was that the students tool use would differ according to competencies. However, such 

difference did not emerge in these analyses, emphasizing the need for developing the analytical tool 

that accentuated justification processes.  The following subsection 8.1.1 argues this point by 

presenting a parallel analysis as a departure for discussing the need for an analytical tool.  
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8.1.1 An example of a parallel analysis  

First, I describe the case subjected to a parallel analysis, and then, how KOM and IAME were 

operationalized in this analysis. 

The case involves a pair of students working on one of the explorative tasks presented in Chapter 6, 

Figure 13: “Relationships between lines”.  Figure 27 includes question 4 and 5 of the task and shows 

the state of the GeoGebra app with which the students were answering the questions. The utterances 

were transcribed and their interaction with the tool described.   

 

Q4) Is it true that CD always will be 

three times the length of AB? Explain 

why this might (not) be true. What is 

your argument? 

Q5)  

 Construct a line EF that is always half 

of CD. Argue why your solution is 

correct. 

Figure 27 – The state of GeoGebra as students S1 and S2 answer Q4   

In the analysis from the KOM perspective, the competency that students exercised were identified. 

Students’ exercise of RC was specified as students putting forward claims and justifying them by 

drawing inferences, thereby altering the epistemic value of their claims (Duval, 2007). Hence, claims 

and changes in epistemic values were identified. Further, students’ justifications were characterized 

as, e.g., exemplification, generalization, or verification by feedback. This corresponds to an 

evaluation of the student’s degree of coverage (Niss & Højgaard, 2019).  

In the analysis from the IAME perspective, the students’ tool use was described with regard to the 

artifact and the activity, such as dragging, typing etc. The tool use was also classified as a case of 

either epistemic or pragmatic mediation. It was expected that changes to the epistemic value of a 

claim would be related to epistemic mediation (Misfeldt & Jankvist, 2018).  

In the following, I present an example of a parallel analysis of a transcript of students’ utterances 

with a description of their interaction with GeoGebra.  
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Then follows an analysis of each coding, and finally, a discussion of how they relate to one another. 

A condensed version of such a parallel analysis is presented in Gregersen (2020).  

Transcript KOM   
RC: Reasoning Competency 

RepC: Representation 

competency 

PHC: problem handling 

Claim, 

epistemic value 

Mediation Artifact, 

object, 

activity 

ST1: [Drags point B so that AB is very 

short, then a little longer] “What if I do 

like this?” 

  Pragmatic  

 

Graphic view, 

point, dragging  

ST2: Have a look, it is three times as 

long… it is like three pieces… (pointing 

at segments) 

RC: visual comparison of 

segments (example) 

 

CD = 3AB, possible 

 

Epistemic Graphic view, 

line segments, 

gestural activity 

ST1: Yeah     

ST2: Yes, I would like to show that it is 

three, but… 

RC: searching for other 

inference possibilities than 

visual comparison 

CD = 3AB, possible 

 

  

ST1: The short one is 33 % of the long 

line 

RepC: translates from fraction 

to percentage  

   

ST1: Okay, [typing answer] yes, it is 

three all the time. 

RC: Generalizing based on 

visual comparison 

CD = 3AB, likely 

 

  

ST2: It should be so easy, and we are just 

not able to find it. [returns to GGB and 

drags point B] 

RC: Searching for inference 

possibilities 

 

 

Epistemic Graphic view, 

point, dragging  

(possibly also 

algebra view) ST1+2: [Both looking at the screen.] RC: Searching for inference 

possibilities 

 

ST1: I think I worked it out! I think that 

maybe this one here. Because if you look 

at D [pointing at point D in the algebra 

view] it might be that it is three times 

larger than A and B. And it is influenced 

by, what is it… I just have to check D 

[Drags point B, D moves]. It is 

influenced by point B. Yes. And also 

point A [Drags point A, C and D moves]. 

And this one [ point C]. It is only 

influenced by point A.  

RC: Inference drawn between 

definition of D and length of CD  

 

 

 

 

 

RepC: Identifying relationships 

between representation 

CD = 3AB, more 

likely 

 

 

 

Epistemic 

 

 

 

 

 

Epistemic 

 

Algebra view, 

gestural activity  

 

 

 

 

Graphic view, 

points, dragging  

 

 

ST2: Oh, so we see that D is influenced 

by A and B, and C is only influenced by 

A. This is true. 

RepC: Identifying relationships 

between representation 

 Epistemic Algebra view and 

graphic view, 

Points 

ST1: The first (referring to the point E), 

that should be C then? Oh, I think I got 

it, are you ready? 

PHC  Pragmatic Algebra view, 

points, input 

field,  

ST2: We need to do point E and F     

ST1: [types () in input field] PHC  

 

Pragmatic Algebra view, 

input field 
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ST2: You need to write E =  PHC  Pragmatic Algebra view, 

input field 

The students then attempt to construct EF by copying the structure of C and D. They discover that the inputs written in the algebra view 

are coordinates but fail to construct EF and continue to the next question.  

 

In the students’ exercise of RC, they agree with the claim that CD = 3AB, based on a visual 

comparison of AB and CD. ST2 expresses that the visual data are insufficient and searches for other 

inference possibilities. First, the student has no luck, so the visual comparison of CD and AB is 

generalized to be “at all times”. Then, ST1 notices “3AB” in the definition of D and states that “it 

might be that it is three times larger than A and B”. ST1 do seem to use “D” as a label for the length 

of segment CD, since D is what varies. The epistemic value of the claim increases each time it is 

asserted. Then the students shift to investigating the symbolic representation in the algebraic view 

as related to the graphic representation. When the relations are established, the students move on 

to question 5 and problem solving. They do not draw conclusions in relation to their claim.  

Concerning IAME, the students primarily show epistemic mediation. They use dragging of the end 

points of lines to compare the relationships among them and to generalize the comparison. Similarly, 

dragging is also used to establish relationships among the representation of the algebra view and the 

graphic view. Epistemic mediation of the algebra view is accompanied by gestural activity or verbal 

expressions pointing towards information in the algebra view. Once the students turn to question 5, 

they interact with the algebra view through pragmatic mediation.   

Relating the two analyses, what can we say about RC and tool use? Whenever students exercise RC, 

epistemic mediation occurs to obtain information that relates to the claim. The epistemic mediation 

occurs in conjunction with dragging, observation of points’ behavior in the graphic view, or 

enunciation of information in the algebra view. However, the students also use epistemic mediation 

when exercising representation competency, but this time in the context of establishing relationships 

between objects. Despite epistemic mediation not being specific to RC, epistemic mediations are 

involved in both the formation of claims and changing the epistemic value of a claim. Though it 

provides some descriptive qualities (Prediger, 2019), identifying the pragmatic and epistemic 

mediation provided little new insight into how the epistemic mediation influenced the epistemic 

state of a mathematical claim.   

However, the parallel analyses did indicate that the information students obtain through epistemic 

mediation, exercising RC or representation competency, concerned different processes. When 

exercising RC, the epistemic mediation concerned students’ own inferences toward the change in 

epistemic value of a claim, related to goal justification, while representation competency concerns 

establishing relationships between constructed objects.  
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Therefore, in IAME the exercise of different competencies can possibly be related the goals that 

orient students’ instrumented acts and are part of students’ schemes (Vergnaud, 1998b). Figure 28 

illustrates the two theoretical perspectives of the parallel analysis with KOM in red, and IAME in 

blue. The aspect of justification within RC is understood as an inference that changes the epistemic 

value of a claim. The IAME perspective shows the fundamental construct of instrumental genesis 

along with epistemic and pragmatic mediation. At this stage of the study, the link suggested between 

goals are illustrated with orange text and an arrow illustrating the connection. The arrow connects 

students’ schemes that are goal oriented with the change in epistemic value. Such a connection 

concerns the relationship “students-activity” in relation to tool use.  

 

 

 

Figure 28 ‒ Illustration of theoretical perspectives in the parallel analyses and suggested links. KOM is 
red, IAME is blue, and links are orange 
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To further understand how this goal unfolds in students’ tool use, it seemed that other notions or 

frameworks concerning justification and justification processes were needed, since both IAME and 

KOM lack local conceptual elements particular to justification and justification processes. Several 

frameworks were considered, and eventually Toulmin’s (2003) model was used. Below, I will briefly 

describe how. 

Though Toulmin’s model originates from outside of MER, it has a rich use history in reasoning 

within MER, but it has also been adapted to other fields, demonstrating its applicability across 

sciences. In Toulmin’s model, a claim is a statement made by the speaker, with a qualifier to indicate 

its likelihood. Justification of the claim is established through other elements of the argument, such 

as data, warrant, and backing. Toulmin’s model is a construct based on an assumption of the 

elements that make up arguments. It rests on hypotheses about standards, values, and convictions 

in jurisdiction and practical everyday reasoning (as opposed to logical and philosophical standards),  

taking into account the complexities and uncertainties inherent in human reasoning. The model’s 

adaptability is evident as “certain constant field-elements can be discerned in the way in which 

argumentation develops” (Toulmin, 2003, p. 2). Assuming that Toulmin has successfully drawn out 

such elements, these must also be present when students exercise RC using tools. 

Through close collaboration with Anna Baccaglini-Frank, an analytical tool was developed by 

reinterpreting Toulmin’s (2003) model with respect to IAME and KOM. Its development is described 

in the following section. 

8.2 THE DEVELOPMENT OF AN ANALYTICAL TOOL FOR INSTRUMENTED 

JUSTIFICATION  
Papers 2 and 3 demonstrate the evolution of the analytical tool for instrumented justification. Paper 

2 introduces an initial version of the tool (see Figure 29), while paper 3 showcases the developed 

version used in the remainder of the study (Figure 30). The analytical tool and its application is 

explained in section 7.1 and in the papers. Here, I address theoretical considerations, elaborate on 

the rationale of the development, and highlight their significance in linking KOM and IAME. In 

conformance with design research, the tool was developed through a continuous process of 

theoretical reflection and retrospective analysis of students’ work. 
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Figure 31 illustrates the theoretical advancements made from paper 2 to paper 3. KOM is represented 

in red, IAME in blue, and the analytical tool with elements from Toulmin’s model is represented in 

green. Links between elements are indicated in orange. What the illustration also conveys is that 

other constructs from IAME are emphasized compared to Figure 28. Note that mediation is no 

longer emphasized, and neither is the object of activity.   

Figure 29 ‒ Generalized version of the initial analytical tool, presented at “Matematikdidaktikkens 
dag” 2020, Emdrup, KBH (Gregersen & Baccaglini-Frank, 2020) 

Figure 30 – Illustration of the analytical tool for instrumented justification, paper 3 
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Paper 2 introduced the analytical tool as justificational mediation (JM), but upon further 

consideration, some issues were identified with this description. Mediation “comes from the 

subject’s activity being oriented toward the object of the activity” (Rabardel & Bourmaud, 2003, pp. 

668-669) and can be either pragmatic or epistemic. However, in applying the analytical tool, the 

change of the epistemic value of a claim involves multiple mediations, both epistemic and pragmatic, 

oriented toward several objects. The notion of justificational mediation proposes an overarching type 

of mediation consisting of multiple other mediations. However, this deviates from the original 

conception of mediation and could potentially cause confusion instead of clarity. Instead, in paper 

3, the analytical tool leads to the following definition of instrumented justification: 

Instrumented justification is a process through which a student modifies the 

qualifier of one (or more related) claim(s) using techniques in a digital environment 

to generate and search for data and warrants constituting evidence for such 

claim(s). (p. 135) 

The definition of IJ remains consistent throughout the study. The crucial part is that IJ is a process, 

and the analytical tool suggests how to identify this process. In paper 2, this is introduced in the 

Figure 31 - Illustration of theoretical links established in a) paper 2 and b) paper 3. KOM is red, IAME 
is blue, the analytical tool is green. Links between perspectives are marked with orange arrows and 
text 
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reinterpretation of the Toulmin model’s analytical unit, which shifts from a finalized argument to 

the process of changing the epistemic value of a claim. This process relates to the qualifier in 

Toulmin’s model. In paper 2, we state that “The first utterance of the claim indicates the start of the 

JM process, in which the aim is to change the qualifier” (p. 453), and “We recognize such a change 

of status of a claim by students’ restatement of the claim accompanied by a new qualifier.” (p. 435). 

The adaptation of the analytical unit creates a link to KOM (note the arrow from KOM to analytical 

tool in Figure 32), where RC is defined as the production or analysis of arguments that support 

mathematical claims (Niss & Højgaard, 2019), and considers the process perspective of justification. 

Additionally, it recognizes that instrumental genesis is a process. The new unit of analysis affects all 

the elements of Toulmin’s (2003) model that originally depicted a finalized argument, and which 

now contains several units. For instance, the data and warrant elements incorporate all data and 

corresponding warrants produced in the unit of analysis, which collectively leads to the change of 

the qualifier. In paper 3, the term re-statement is redubbed re-claim in line with Toulmin’s 

terminology. A re-claim may take the form of a partial recapitulation or an indirect reference, such 

as “it”. For instance, a statement like “it must be true” is considered a re-claim accompanied by a 

qualifier. In paper 3, the epistemic value of a claim is now referred to as a change of qualifier, in line 

with Toulmin’s terminology. The significance of the qualifier and how it was derived from the data 

are elaborated upon in paper 3: 

The qualifier can then be inferred from the student’s actions; for example, a statement 

can be uttered with hesitation, or if a student continues to search for data, we can 

infer that the student is not yet convinced that the claim is true. The qualifier can 

change from “possible” to “more possible”, “less possible”, “true”, or “false”. (p. 121) 

The advancement in the inferences about qualifiers was achieved by using the tool in a wider range 

of student cases, which presented more complex situations where the qualifier was not explicitly 

stated. Another adjustment introduced in paper 3 was that most IJ processes consist of multiple 

restatements, at times with rebuttals that result in new or revised claims. Thus, the analytical tool 

was reevaluated to encompass these more intricate processes as IJ sub-processes. 

While paper 2 emphasized the importance of backing as a core component of JM, paper 3 

omitted this aspect. In paper 2, we highlighted that: 

In the context of JM, we consider the backing to be an explanation of why the warrant 

is relevant (Simpson, 2015). Central is, that the aim of JM is to change the status of 

the claim, so the backing must explain why the warrant is relevant for generating data 

that allows the change in the status of the claim. Thus, the backing becomes 

fundamental to the JM process. Currently, we have reached the following formulation 
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of backing in JM processes: If the claim is true, I can generate data, within the specific 

instrument, that is consistent with the claim. This seems closely related to Vergnaud’s 

(2009) notion of theorem-in-action, a sentence that the solver believes to be true, but 

that may in fact be false. (p. 453) 

However, in paper 3, we no longer analyzed students’ backing, for various reasons. The application 

of the backing remains unclear across MER (Simpson, 2015), leading to low replicability of 

inferences about student backings. In paper 2, we inferred a backing, which we elaborated as a 

possible theorem-in-action: “If the claim is true, I can generate data, within the specific instrument, 

that is consistent with the claim.” In this case, the backing acts as a meta-theorem-in-action, 

referencing the trustworthiness of digital artifacts and the data they process. In other words, it 

concerns student trust in the tool as an instrument consistent with mathematical theory in the 

generation of data. However, in hindsight this meta-theorem-in-action was imposed on the 

participating students, since they were specifically asked to use GeoGebra. Finally, the nature of 

students’ arguments caught our attention in the case we analyzed for paper 3. Altogether, in paper 

3, we shifted our focus towards the techniques and generation of data. I will touch upon backing as 

a link to KOM in the discussion. 

An essential development from paper 2 to 3 was the shift from considering schemes in its generality, 

as generative and epistemic aspects, to the use of the scheme-technique duality (note the arrows 

from the blue IAME constructs to the analytical tool in Figure 31).   

In paper 2, we wrote:  

The generation of data is the product of the generative aspect of the schemes used 

(e.g., dragging, creating objects on the screen and interacting with them, utterances 

and other hand-gestures) that are carried out by students. Warrants are the epistemic 

aspect of the schemes used. (p.453) 

While in paper 3, we wrote:  

A second feature of our analytical tool is that a technique frame appears next to the 

data. This is because the main source of data, as students attempt to justify claims in 

a digital interactive environment like GeoGebra, is the effect of their use of techniques 

(as described in the TIG). The invisible schemes direct and organize actions with or 

on the data, but they also contain conceptual elements and rules that regulate actions 

(Drijvers et al., 2013). Such rules can be seen in the model as warrants, which are 

inference rules that connect the data to the claim. (p. 122) 
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An advantage of using the scheme-technique duality (Drijvers et al., 2013), discussed in subsection 

2.6.1, is its ability to establish direct correlations between observed techniques, the resulting data, 

and the inferred warrants. Considering the analytical tool in Figure 30, the reader might get a sense 

of this correlation. The introduction of the duality also emphasizes a double orientation of the 

warrants to both direct the generation of new data and interpret the data as evidence for or against 

the claim, or even regard the data as irrelevant to the claim.  

As such, the scheme-technique duality (Drijvers et al., 2013) provides a pair of concepts to determine 

observable interaction with a tool as techniques that are organized by a scheme. Those schemes, in 

turn, are also expressed in the warrants that interpret the outcome of those actions and conduct 

inferences. By doing so, the analytical tool establishes links to the IAME that allows a clear 

identification of how students’ interactions with the tool contribute to the change of the epistemic 

values of claims through the generation of data.  

8.3 REFINING THE ANALYTICAL TOOL FOR INSTRUMENTED JUSTIFICATION 
The preceding section described the development of the analytical tool and discussed how it can link 

IAME and KOM. Paper 5 and Chapter 7 in the kappa refines the analytical tool with concern to 

components of students’ schemes, mediation, and the three dimensions of RC, establishing 

additional links between the RC and TIG. Subsection 8.3.1 focus on the contribution of paper 5 and 

the components of schemes, while 8.3.2 focus on mediations and the three dimensions of RC. 

8.3.1 The components of scheme 

As portrayed above, the IJ tool establishes links to both KOM and IAME through the scheme-

technique duality. Paper 5 elaborates further on the components of scheme (Vergnaud, 1998b), that 

is the operational invariants rules-of-action, theorems-in-action about concepts-in-action, and the 

possibilities of inference. Those constructs are operationalized in further analysis of an IJ process to 

relate students’ conceptual knowledge to their RC which is illustrated in Figure 32. 

Central to this is the link between warrants and schemes: “schemes are goal-oriented concerning the 

task at hand (Vergnaud, 1997)—in this case, the goal is putting forward a prediction and justifying 

that prediction by changing the epistemic value of the prediction. Such activity involves both rules 

of-action and theorems-in-action about relevant concepts-in-action” (paper 5, p. 66).  

Figure 32 includes the components of schemes. The orange arrows and text indicate how the 

components are related to the existing elements of the analytical tool. I will explain these relations 

one by one.  
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Figure 32 – Links established between the scheme-technique duality and RC through the analytical tool 
for IJ. The circle marks the point in the process where warrants interpret data as evidence for or against 
the claim, which allows for inference between operational invariants 
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Schemes have a component that consists of goals and sub-goals, and which depends on situational 

variables (Vergnaud, 1998b). It has already been established that in IJ processes, the goal is to 

change the epistemic value of a claim, and KOM describes that this is done through inference. The 

subgoals are not elaborated in paper 5, but they could be along the lines of: “Make the trace start 

further down the x-axis” or “Explore if and how the new data aligns with the claim”.  

Warrants are inference rules that connect the data to the stated claim. In paper 5, those inference 

rules are considered as either rules-of-action or theorems-in-action. Rules-of-action, the less 

complex of the two, rely on operational invariants. They are the generative aspect of a scheme, 

governing and organizing the techniques that students use to generate data in support of a claim. A 

defining feature of rules-of-action is their effectiveness. In the context of IJ, effectiveness can be seen 

as relating to the data that a given technique generates. This notion of relevance is intertwined with 

the perspective that justifications must be grounded in the intrinsic properties of the task. This, of 

course, extends to the techniques and rules-of-action employed by students in the IJ process. 

Ultimately, the RC in IJ processes also includes student generation of relevant data.  

In Figure 32, note the circle formed by the intersection of the arrows between data and warrants. 

This intersection is significant because it marks the place where warrants interpret data. From there, 

an orange arrow points towards inference possibilities, a component of schemes. Inference is a 

defining characteristic of RC, making inference possibilities particularly relevant to study. In paper 

5, I argue that the inferences made in IJ processes are between the operational invariants made in 

the interpretation of data, and we can draw assumptions about these inferences by considering 

students’ warrants. This leads to a more complex component: the operational invariants, which are 

propositions about concepts-in-action held to be true (Vergnaud, 1998b).  

Paper 5 suggests that warrants that are not rules-of-action can be considered as theorems-in-action. 

In IJ processes, those warrants evolve as students produce more elaborate data or realize the 

relevance of concepts or properties. As explained in paper 5, 

The change in epistemic value occurs through an interplay of producing data and 

interpretation through inference between the operational invariants. The inference 

allows the production of additional supportive or contradictory data. This cycle 

continues until the epistemic value is changed. (p. 69) 

As students relate what they see on the screen (data) to what they know (warrants), inference 

possibilities emerge concerning concepts-in-action, and those inferences yield warrants, which in 

turn allow students to interpret data as evidence for or against a claim. What is particularly beautiful 

about these links is that they emphasize the students as initiators of their own development. The 
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students, based on their immediate interpretations of the task and situation, generate data from 

which they can make inferences that lead to new realizations. 

The insights provided by the links in paper 5 shed light on how the epistemic value changes through 

the use of a DGAE, as well as how students’ processes can be seen as conceptually based 

mathematical inferences. By examining students’ operational invariants and the inference 

possibilities between them, we can suggest how students exercise their RC when utilizing tools.  
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8.3.2 The three dimensions of the RC and mediation 

Chapter 7 examines the three dimensions of RC (degree of coverage, radius of action and technical 

level) (Niss & Højgaard, 2019) and their connection to various aspects of IJ and the scheme-

technique duality. Hence, it relates KOM to both the analytical tool and IAME’s scheme-technique 

duality (Drijvers et al., 2013), including epistemic and pragmatic mediation. 

This is illustrated in Figure 33, where elements that pertain to the degree of coverage are marked by 

a protractor, the radius of action by a compass, and the technical level by a calculator. In the figure, 

pragmatic mediation is represented by a yellow shade and epistemic mediation by a green shade. 

Figure 33 – Continuation of Figure 32. Added are the degree of coverage marked by a protractor, the radius of 
action marked by a compass, and the technical level marked by a calculator. In addition, pragmatic mediations 
are represented by a yellow shade and epistemic mediations by a green shade 
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The following section briefly summarizes how the three dimensions correspond to different aspects 

of the IJ tool.   

Note that the degree of coverage is placed as related to the goal. This is the one link that relates most 

directly to KOM’s RC, as the goal is expressed in students’ active participation in IJ processes. Such 

an activity is aimed at changing the epistemic value of stated claims, distinct from other goals related 

to competencies, such as problem handling, mathematical modeling, etc.  

The radius of action is expressed in several elements, some within the IJ process and some within 

the IAME. An element within the former is the nature of the claim being asserted, such as a proposed 

solution to a problem, a claim concerning a strategy, or techniques to solve it. The latter encompasses 

the range of artifacts a students can use for pragmatic and epistemic mediation in IJ processes across 

different mathematical domains. In Figure 33, pragmatic mediation is represented by a yellow shade 

and epistemic mediation by a green shade. This places the mediation in the processes that unfold 

between student’s scheme-technique duality and the processes captured by the IJ tool. Pragmatic 

mediation occurs in the production of data through techniques that are governed by rules-of-action. 

Epistemic mediation occurs in the interpretation of data, as evidence by warrants, and in the 

relations between inference possibilities, the operational invariants, and warrants. Radius of action 

hence concerns both forms of mediation, in relation to the range of artifacts the students can use. 

Finally, it also concerns the students’ range of tasks or situations for using artifacts.  

The technical level is linked to the complexity of techniques used or envisioned. Nonetheless, the 

quality of justifications is primarily determined by a student’s comprehension of underlying concepts 

and intrinsic properties, which are conveyed through warrants. The quality of justification is also 

influenced by the nature of the justification, i.e., whether it is grounded in phenomenological or 

algebraic knowledge. 

8.4 DISCUSSION, PART 3: POTENTIALS FOR NETWOKRING AND REVISINTING 

NOTIONS 
The discussion has two parts. 8.4.1 discusses meta-theoretical perspectives toward the potential of 

networking and networking strategies for linking KOM and IAME. 

8.4.2 discusses the contributions of the links and, hence, revisits some of the notions introduced and 

elaborated in the theoretical framing in Chapter 2. 

Finally, I discuss potentials for networking based on the theoretical development and the links 

established between the two frameworks as potentials for a coordinating strategy.  
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8.4.1 Potentials for networking 

In networking practices (e.g., Bikner-Ahsbahs & Prediger, 2014), theories are described as close or 

distant to each other, depending on the extent of commonality. This section first addresses 

commonalities and differences of the two perspectives. This falls within the networking strategy of 

comparing and contrasting (see subsection 2.1.1). I draw on the concepts of background theory and 

foreground theory by Mason and Waywood (1996) and distinguish between background theory 

within or from outside of MER, as discussed in paper 6. 

IAME is a theoretical approach that is local in grain size, and that theorizes students’ use of tools in 

mathematics education. It has incorporated constructs from the theory of instrumental genesis 

(Rabardel, 1995/2002; Rabardel & Bourmaud, 2003) and developed constructs more particular to 

MER (Haspekian et al., 2023).  

KOM is a medium grain size theoretical framework of hierarchically organized constructs. It deals 

with a broad range of topics related to the mastery of mathematics across different age groups and 

institutions (Niss & Jankvist, 2022). Thus, KOM and IAME differ in both grain size and scope. Since 

this study focuses on the RC, specifically on the aspect of justification, the theory development is 

local and aims to shed light on the processes involved in this aspect of RC. 

“A fundamental issue for linking two theoretical entities is whether these represent two different 

ways of dealing with the same object(s) or phenomena, or whether they deal with different objects 

or phenomena” (Niss & Jankvist, 2022, p. 32). KOM and IAME have different objects, but they do 

share methodological means, as both concern student behavior as a subject of analysis. 

Consequently, the same datasets can be analyzed from both perspectives. Considering the complete 

frameworks of KOM and IAME, linking the two can be fruitful in specifying processes associated 

with a competency and relating them to different aims of tool use. This can enrich IAME with new 

perspectives on types of tasks and situations for tool use. In turn, for KOM, the competencies are 

extended to include aspects relating specifically to the use of tools. Linking the two approaches can 

thus be “mutually fertilizing” (Niss & Jankvist, 2022) for both approaches.  

Both KOM and IAME concern the cognition of the individual. Competencies are considered cognitive 

in nature, since they are an individual’s expression of cognition in specific mathematical situations 

(Niss & Højgaard, 2019). However, Niss and Højgaard (2019) clarify that readiness means “an 

individual’s cognitive prerequisites for engaging in certain activities” (p. 18) does not have a distinct 

theoretical background theory outside of MER. Rather, it is developed as a framework inside of MER, 

from what appears to be a grounded theory approach (Vollstedt & Rezat, 2019), as the framework 

has emerged from an empirical discourse within a mathematical community, rather than resting on 

a scientific theoretical perspective. Instrumental genesis is a cognitive process that unfolds between 
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an individual and an artifact, and IAME draws on the construct of schemes(Rabardel, 1995/2002; 

Vergnaud, 1998b). However, acknowledging a socio-cultural perspective with regard to artifacts 

(Rabardel, 1995/2002), IAME has a constructivist background theory (Mason & Waywood, 1996). 

In this regard, the two theories can complement each other.  

Recall that networking can have different strategies depending on its aim and integration. Two of 

them are the coordinating and combining strategies (Prediger, Bikner-Ahsbahs, et al., 2008), which 

aims at understanding an empirical phenomenon or piece of data. What sets the two strategies apart 

is that combining considers conflicts between the theoretical approaches as a contribution to 

multifaceted insights into phenomena, whereas coordinating has different research objects. 

Therefore, research aims and methods must be complementary to capture inter-relational variables 

(Prediger, Bikner-Ahsbahs, et al., 2008). Taking the differences into account, coordinating is the 

most promising strategy. As the links established in this study aim at understanding the data that 

have emerged as instrumented justification, KOM and IAME also differ in the objects being studied, 

and the analytical tool for IJ suggests which inter-relational variables can be captured between the 

two.  

Coordinating often results in a conceptual framework but does not necessarily present as completely 

coherent (Bikner-Ahsbahs & Prediger, 2014). However, coordinating aims at a high degree of 

coherency between well-fitting elements from different approaches. This leads to the question: How 

well-fitting is KOM and IAME? 

Unlike IAME’s notion of scheme, KOM categorizes activities and related cognition as particular to 

different situations, without capturing cognitive processes. This distinction, while posing the 

challenge of linking constructs at different grain sizes (Niss & Jankvist, 2022), concerning different 

objects, also highlights the complementary nature of the two perspectives. Hence, IAME and KOM 

do not have deviating constructs, which underscores the potential for their integration. 

The present study addressed these challenges by adapting Toulmin’s argumentation model. From a 

networking perspective, I will now argue that Toulmin’s model, when reinterpreted into the 

analytical tool for IJ, can serve as a boundary object (see 2.1.1.5). This entity acts as a bridge between 

practices, making the boundaries between KOM’s RC and IAME more permeable. The IJ analytical 

tool provides constructs that concretize the RC, which allows for the establishment of links. Star and 

Griesemer (1989) argued that a boundary object must be “plastic enough to adapt to local needs” 

and “yet robust enough to maintain a common identity” (p. 393). Both are relative matters. 

Concerning plasticity, Toulmin (2003) make few assumptions about mathematics or education. 

However, in the book Uses of argument, Toulmin (2003) does take a position on standards of 

argumentation. He is concerned with what counts as convincing for humans across scientific fields, 
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and he is opposed to viewing argumentation by the standards of philosophies of logic. Though not 

completely aligned with mathematical ideals of arguments (that is, logic), this position makes the 

model adaptable across scientific fields.  

In paper 2, we questioned the robustness of Toulmin’s model: “These stretches seem to be leading 

rather far from the initial model, and we wonder how appropriate it might be to still refer to 

Toulmin’s model at all, also considering a posteriori how we have sort of “substituted” elements from 

the IA to parts of the model.” (p. 458). The primary concern revolves around the shift in the unit of 

analysis and its implications. While Toulmin’s initial work did not intend to examine justification 

processes that lead to the argument, it is worth noting that these processes must at least include the 

components of the final argument. Additionally, these processes necessarily involve the individual’s 

role in developing these components, and it is not uncommon in MER to use Toulmin’s model in the 

context of reasoning processes (Simpson, 2015). To conclude, whether Toulmin’s arguments model 

maintains its identity is debatable, but from a pragmatic point of view, the reinterpretation of the 

model into the analytical tool for IJ has proven to be a useful boundary object for understanding 

students’ use of tools in justification processes. This has allowed links to be drawn across the RCs of 

KOM and IAME. 

To summarize, comparing the two frameworks reveals potentials for networking KOM and IAME. 

They do not conflict concerning background theory or deviating constructs, and they share subjects 

of analysis. There are, however, some issues in linking the two perspectives that must be addressed. 

These issues concern the lack of correspondence between constructs, due two differences in objects 

and the scope of constructs. This study suggests that networking, at least on a local scale, can be 

assisted by a boundary object. Such a boundary object must concretize the given competency in play 

and be plastic enough to be linked to IAME.  

8.4.2 Revisiting notions in the perspective of the analytical tool for IJ  

The parallel analyses yielded limited new insights into the influence of epistemic mediation on the 

epistemic state of a mathematical claim. However, they did help establish connections between 

students’ goals of instrument use and their competencies. The theoretical connections established 

through the analytical tool offer a more comprehensive understanding of how pragmatic and 

epistemic mediation are specific to IJ processes. 

The processes of mediation can be further elucidated by considering the components of schemes. 

Pragmatic mediation occurs in the production of data through techniques governed by rules of action. 

It is important to note that the mediation of objects is facilitated by the artifact (Rabardel & 

Bourmaud, 2003). In line with IAME, the pragmatic mediation of objects using techniques is not 
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solely determined by the student’s own rules-of-action, as is the case with traditional pen-and-paper 

tasks (Vergnaud, 1998b). Pragmatic mediation is also influenced by the algorithms inherent in the 

artifact. Following Vergnaud’s terminology, we may refer to them as instrumented algorithms-of-

action, some of which align with mathematical theory.   

Epistemic mediation plays a crucial role in how students interpret data as evidence through the use 

of warrants in the relationships between inference possibilities and operational invariants. This 

suggests that students are interpreting instrumented algorithms-of-action into their own theorems-

in-action, advancing their conceptual knowledge. 

Recall that the technique-scheme duality was suggested as a pragmatic means to solve a methodical 

problem. It was articulated by Drijvers et al. (2013) for analyzing small data sets (either in time or in 

a number of individuals) and because of the practical need to discuss instrument use is such cases 

from the perspective of IAME. Subsection 2.3.1 discusses the notion of techniques, to be considered 

within the background theory of IAME, as the primary perceptual and gestural activities that involve 

the mobilization and implementation of instrumented action schemes encompassing all gestures 

involved in student activity when using a digital tool (such as hand movements during expressions, 

observing an artifact or activity on objects mediated by the artifact, articulation of imagined 

activity). Paper  5 suggests that techniques are regulated by students’ rules-of-action related to the 

artifact, as rules of action are “responsible for generating behavior based on situational 

variables” (Vergnaud, 1998b, p. 229). Revisiting the notion of techniques as the mobilization and 

implementation of rules-of-action can clarify how techniques both relate to and are distinct from 

schemes.  

Another important discussion, the relative invariance of schemes, is rarely addressed in the IAME 

literature (Pittalis & Drijvers, 2023). Often, the definition of schemes emphasizes that schemes are 

invariant which is recognized in the invariant behavior. However, it does not address the new 

situations and tasks for which students have not developed instrumented action schemes, which is a 

typical situation in education. It is, however, recognized by Vergnaud (1998a):  

Nevertheless students are often faced with situations for which they do not have any 

scheme available. Therefore they have no other way but to call schemes in the 

neighborhood, to try to decompose and recombine them, in order to form new 

schemes, with or without the help of the teacher or other students. (p. 173) 

Two conclusions can be drawn from this passage: First, students will decompose or recombine 

schemes, and second, this will probably occur with or without the teacher’s involvement. 
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In paper 5, I suggest addressing such a situation by analyzing the components of scheme rather than 

looking for patterns across similar tasks. This can yield further insight into how students deal with 

an unknown type of task, such as the prediction tasks and the equal points task.  

When such a situation is addressed, the notion of techniques becomes particularly relevant. As 

invariant patterned behavior has not yet been developed, we cannot search for it. Instead, we can 

investigate how students search for efficient rules of action as they decompose and recombine 

neighboring schemes. The case of Lev and Rio in paper 5 is a great example of this, as I argue that 

they possibly use rules-of-action related to variables as a placeholder, along with rules-of-action 

related to variables as a general number. In addition, some measures can be implemented. Design 

principle C suggests how to support students in this process, e.g., by directing student attention to 

an object in the algebra view with the task wording, or indicating the epistemic value of the claim as 

argued in discussion, part 1 (see section 6.5). 

Techniques can be even more relevant if we understand them as rules-of-action that are not 

necessarily components of a stable, fully-formed scheme. They can also be rules-of-action of 

neighboring schemes that students are trying to apply in the situation, toward the development of 

an instrumented action scheme. Hence, techniques are the primary perceptual and gestural activities 

that involve the mobilization and implementation of rules-of-action in the development of 

instrumented action schemes.  

These reflections and the theoretical developments of the study contribute to the IAME, as they 

expand the notion of schemes and its components as described by Vergnaud (1998b) and show how 

those components are relevant in the context of tool use, not only with respect to RC, but in general. 

Indeed, possibilities of inference and the operational invariants have particular roles in justification 

processes, illuminating the cognitive ‘ingredients’ that KOM does not explicate.  
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9 FINAL DISCUSSION AND CONCLUSION 

The discussion parts 1, 2, and 3 have separately addressed answers and results for each of the 

research questions. The purpose of this final discussion is to address methodological choices, argue 

for the relevance of the results to MER, and discuss issues across the three research questions: 

RQ1: In what ways can tasks be designed to encourage lower secondary students to exercise 

their reasoning competency when using a dynamic geometry and algebra environments 

in the case of justification focusing on variable as a general number? 

RQ2: What are the relationships between lower secondary students’ scheme-technique duality 

when solving tasks developed for RQ1 in a dynamic geometry and algebra environment 

and their exercise of reasoning competency as justification?  

RQ3: Which theoretical links can be established between reasoning competency and the 

Instrumental approach to mathematics education from the theoretical developments of 

the study?  

The main answer to RQ1 consists of the design principles A, B, and C, the microworld of variable 

points, and the associated tasks. 

The main answer to RQ2 consists of the elaboration of the three dimensions of RC in students’ IJ 

processes, and how they relate to the scheme-technique duality. This led to suggestions for how 

students’ IJ processes can be supported in the classroom and through task design. An additional 

finding is the indication of a hybrid conception between continuous and discrete understandings of 

the variable in the prediction of variable behavior, made possible by the DGAE environment.  

The main answer to RQ3 are the theoretical links between KOM and IAME, established through the 

analytical tool for IJ, as potentials for networking with a coordinating strategy. Building on these 

links, notions within the framework of the study are revisited.  

This discussion is divided into four sections. 9.1 revisits the methodology, 9.2 discusses the quality 

and relevance of the answers, 9.3 debates issues and findings across the three research questions 

that are not yet addressed, and section 9.4 discuss perspectives for further research and implications 

for practice, and 9.5 concludes the dissertation, summarizing the answers to the research questions. 
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9.1 METHODOLOGY REVISITED  
The overarching goal of the study was to investigate the potential of tools that integrate algebraic 

and graphic features, such as the algebra view of GeoGebra, for students to exercise their RC as a 

means for theoretical development that links the KOM framework to theories in MER.  

As presented in Chapter 4, in pursuit of the overarching research aim, the study has taken the DR 

approach, as well as a networking perspective, as explained in Chapter 2. DR could have been 

deemed sufficient as it produces both empirical and theoretical results, so why the networking 

perspective? The reason is that the networking perspective allows reflective research of the 

theoretical developments at a deeper level than allowed within DR. Networking practices provide 

sustainability to the theoretical results because conceptual differences are confronted, and potential 

theoretical conflicts in the background theories, both outside and inside MER, and principles are 

identified so that discrepancies can be considered. Hence, the networking approach also contributes 

to the validity of the DR study. I will address this aspect in the coming discussion of methods and 

quality of results, but first, I will revisit DR in regard to competencies.  

9.1.1 Revisiting design research as competency-specific 

DR is inherently iterative, aiming to bridge theory and practice in educational research. Chapter 4 

elaborates on how the researcher’s role can be considered twofold, with a creative perspective and 

an analytical perspective. This section will discuss how the study can contribute to an understanding 

of competency-specific DR studies and address the explorative aspect of the DR processes in relation 

to the two perspectives. 

Although competency-specific DR studies are not explicitly theorized within DR methodology, they 

can be considered analogous to topic-specific DR. Though engaging with mathematical content 

remains essential for exercising any competency (Niss & Højgaard, 2011), in competency-specific 

DR, the objective is to facilitate students’ engagement with a competency, such as justification, 

creating opportunities to understand and develop this competency. Hence, in competency-specific 

DR, content serves as a means, while in topic-specific DR, it is the goal (Gravemeijer & Prediger, 

2019). This distinction significantly impacts the design process. Gravemeijer and Prediger (2019) 

claim that the preparatory phase forms hypothetical learning trajectories for topics, conjectured on 

theories about a possible learning process, and a possible means of supporting that learning process 

and relevant or useful goals. However, in this study, the preparatory phase has focused on what 

inhibits or assists students’ engagement in reasoning processes, rather than learning processes or 

learning goals. Thus, the answers to RQ1 elaborate on this query. 

From the creative perspective, exploring justification processes within MER, especially using 

GeoGebra (paper 1 and subsection 6.1.2), necessitated an explorative approach to task construction. 
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Competency-specific DR allowed some freedom; the algebra view had to be in play, and it had to 

provide students with an opportunity to exercise RC. The conceptual aspects emerged from 

explorations rather than being predefined. This creative space enabled the exploration of GeoGebra’s 

potential through varied tasks. Prior experience with GeoGebra, inspiration from coding, and 

feedback from peers, educators, and supervisors were integral to the creative process. Although this 

approach allowed creativity, starting from scratch impacted task quality, which meant that only some 

students engaged in justification. Further development suggestions are discussed in subsection 6.5.3 

and 7.4. Reproducing or redesigning tasks from other studies could have lessened negative impact 

of the explorative approach. The competency-specific DR study in conjunction with the explorative 

approach also influenced the retrospective analyses. In the retrospective analysis, search for the 

potential tasks for students’ engagement in justification (as the prediction tasks) and which tasks 

resulted in interesting justification that we could hope more students would engage in (as the equal 

points tasks). Topic-specific DR studies can also have an explorative approach, but naturally differ 

in the retrospective analysis to evaluate students’ progressions within the topic.   

By reflecting on Gravemeijer and Prediger’s (2019) descriptions, competency-specific DR shares 

characteristics with topic-specific DR but differs in research aims, impacting both analytical and 

creative aspects. As such, this discussion can add to our understanding of what DR can be, as well as 

provide methodological warrants for answers for RQ1 that encompass the development of Design 

Principles.  

9.1.2 Revisiting networking of theories 

The NT perspective has influenced several aspects of the study, which I elaborate on subsequently. 

The main function of NT has been to elaborate and solidify the links between RC and the scheme-

technique duality as a form of mutual fertilization (Niss & Jankvist, 2022) of KOM and IAME. 

In all components of the study, the IAME (Drijvers et al., 2013; Trouche, 2005) provided the 

theoretical perspective on students’ use of DGAE. The approach offers several constructs that revolve 

around the different processes of students’ interaction with tools. As the project evolved, the 

technique-scheme duality became central for zooming in on students’ use of artifacts rather than 

branching out to generalize across uses. As this duality has been heavily debated and critiqued (as 

laid out in subsection 2.6.1), it has required new perspectives on the notion of techniques, drawing 

on the background theory of IAME, examining the works of Rabardel and colleagues (Rabardel, 

1995/2002, 2001; Rabardel & Bourmaud, 2003). In doing so, networking as a research practice 

(Bikner-Ahsbahs & Prediger, 2014) has been valuable, bringing awareness about the importance of 

the implicit assumptions of theories, both to understand the criticism surrounding the notion of 

techniques and how techniques can be approached to accommodate the matter. The study has 
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established theoretical connections between RC and the IAME, based on the theoretical 

developments of RQ3, particularly through the analytical tool for IJ. This involved synthesizing 

research results to enhance the understanding of the link between RC and IAME. To examine the 

scheme-technique duality in the context of reasoning processes, Toulmin’s (2003) argumentation 

model has been reinterpreted into a procedural model, labeled the analytical tool for IJ, that has 

acted as a boundary object (Star & Griesemer, 1989) between the two approaches. In these processes, 

networking has been paramount for choosing a set of constructs that did not conflict with either 

KOM or IAME.  

9.2 QUALITY OF THE MAIN RESULTS 
Schoenfeld (2007) argues that the quality of research must be judged by its trustworthiness, 

generality, and importance.  

He presents five key dimensions of credibility, which are related to the persuasiveness of the 

assertions presented in a research study. These dimensions include descriptive and explanatory 

power, prediction and falsifiability, rigor and specificity, replicability, and triangulation. I will 

discuss trustworthiness, generality and importance with concern to both design results in subsection 

9.2.1 and theoretical results in subsection 9.2.2.  

9.2.1 Trustworthiness: Validity and reliability  

Bakker and van Eerde (2015) propose that validity and reliability in DR studies can be addressed 

using the notions of internal and external validity. Internal validity, which refers to the quality of the 

data and the soundness of the reasoning that leads to the conclusions, plays a crucial role in the 

quality of research results. A technique that may be applied to improve the internal validity of a DR 

study is the use of data triangulation in the retrospective analysis (Bakker & van Eerde, 2015). The 

many sources of data (transcripts, video, screencast, written products) collected in the project 

allowed for this type of analysis.  

The data have analyzed with two different methods. The established relationships between student’s 

scheme-technique duality and dimensions of RC are based on the comparison of seven pairs of 

students solving the same task. The internal validity of these results is reliable as the argument are 

backed by a diversity between the seven pairs. However, these results could be strengthened by 

replicating the method in the context of other tasks. This could potentially also strengthen the 

descriptive elements (Prediger, 2019) of those relationships. 

Other results stem from case-based analysis using the analytical tool for IJ (paper 2, 3 and 4, 5 with 

additional analysis in Chapter 6). Some stem from a comparative approach, comparing students’ 

arguments across iteration 2 and 3 (paper 4). The findings that rest on analysis of a singular key-
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case (Thomas, 2011) of students’ IJ processes have less internal validity and consequently, these 

findings serve only as proof of existence (Shoenfeld, 2007). 

The validity of the analytical tool for IJ has been applied in the analysis of students’ justification 

processes using tools. As the tool has been applied across cases with detailed description of both 

conceptualization and application, both the validity and reliability of the tool as an explanatory 

theory element can be warranted.   

As explained in section 7.1, the IJ tool has an analytical unit from a claim to a reclaim. The analytical 

unit has generally been applicable across cases. However, I would like to point to a few issues. Some 

IJ processes have no reclaim, as in the case presented in the parallel analysis (subsection 8.1.1). In 

their processes, the students shift their attention to representational structures and do not return to 

the claim and the implications of the relationships they identified. It is obviously not uncommon for 

students to shift or lose focus. Such cases can still be analyzed but are unsuccessful justification 

processes, as the qualifier is not changed. Another issue to be careful about when identifying the unit 

of analysis in data, is that not all reclaims entail a change of epistemic value. This is the case if no 

new data have been produced or no new interpretations have been enunciated.    

9.2.2 Descriptive and explanatory power 

In DR, the implementation of interventions in a naturalistic setting leads to a vast number of 

dependent and independent variables, which can challenge the explanatory power (Collins et al., 

2004). Thus, the descriptive power of DR requires the researcher to take particular care in describing 

both the setting of the intervention, the learners, the resources and supports applied in the setting, 

and the collaboration and role of practitioners that the intervention concerns. The DR processes are 

described in Chapters 5, 6, and 7. Chapter 5 details when and where the experiments took place and 

gives information about the participating students and the data collected from the experiments. 

Chapter 6 explores the design processes in-depth, covering both task construction and snapshots of 

the retrospective analysis. 

Additionally, Chapter 7 and papers 2-5 offer examples of retrospective analysis. However, 

Schoenfeld (2007) also signifies that descriptive power is not veridical but should focus only on what 

is essential. It is reasonable reflect on whether the DR project has been overly elaborated. There are 

certain aspects, such as sources of inspiration and the reparative presentation of progression in 

design principles, that fall outside the essential description. However, the explanatory approach in 

the DR study and the lack of prior knowledge on the uses of the algebra view (paper 1) necessitated 

transparency and clarity of the DR processes—addressing aspects of rigor, specificity, and 

replicability. This necessity might somewhat reduce the descriptive power but ensures a 

comprehensive understanding of the design principles that have evolved.   
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The study is underpinned by the assumption that students’ use of the DGAE is connected to their 

RC. This assumption is based on the understanding that variations in students’ use of artifacts result 

in different justification processes and final arguments. These variations were identified through a 

comprehensive analysis of students’ final arguments (paper 4), their use of techniques, as well as 

differences in their epistemic and pragmatic mediation (Chapter 7). Therefore, the relationship 

between the use of artifacts and students’ RC is clearly demonstrated as descriptive elements in the 

data (Prediger, 2019).  

With concern to the explanatory power of DR studies, Prediger (2019) states that if a relationship 

between descriptive elements can be derived, it increases the explanatory power of such elements by 

pointing to cause-effect relationships between phenomena or structures. Discussion Part 1, which 

addresses the design results, comes before the analytical results of Chapter 6 and the theoretical 

developments described in Chapter 7. Since explanatory theory elements in DR are closely related to 

theoretical development (Prediger, 2019), the explanatory elements are addressed in this final 

discussion.  

The study has produced four explanatory theory elements. The first is the analysis of students’ 

justification processes using the analytical tool for IJ, as in papers 2, 3, 5, and Chapter 7. These 

elements explain IJ processes as the production and interpretation of data toward the change of the 

qualifier of a claim, relying on the student’s scheme-technique duality. The second explanatory 

element is the relationships established between students’ scheme-technique duality in IJ processes 

and the three dimensions of RC. Hence, it explains students’ IJ processes as expressions of their RC, 

related to different components of students’ schemes. The third explanatory theory element is the 

links established from a networking perspective, explaining how the processes described by the IJ 

tool relate to concepts in IAME and the three dimensions of RC. The final explanatory theory element 

is the relationships to other competencies, identified in paper 4, namely the problem handling 

competency and the symbol and formalism competency.  

9.2.3 Predictive power and falsification 

Together, the explanatory theory elements add to the explanatory power of the study. What has 

gained less attention is predictive power. Predictions are about whether the results contain a 

predictive element and whether it is possible to falsify the results (Schoenfeld, 2007). The design 

principles are predictive (Prediger, 2019); however, the study has been less concerned with the 

extent to which certain solutions or forms of justification occur under the circumstances created in 

the experiments. Schoenfeld (2007) argues that “the more theoretical claims can be examined and 

tested by data, the more there is the potential for refinement and validation” (pp. 86-87). 

Falsification of the results of this study exceeds the limits of this PhD project but also falls back on 
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the choice of relying on case-based analyses. As a result, explanatory power has gained priority over 

predictive power. 

9.2.4 Generalizability and transferability of results 

External validity refers to the generalizability and transferability of the results. The limits of the 

results can be nuanced into four types of generalizability: claimed, implied, potential, and warranted, 

depending on how substantiated the assertion of generality is (Schoenfeld, 2007). The discussions 

also touch upon future perspectives of the results, providing opportunities for discussing their 

importance. Schoenfeld (2007) argues that the relevance and importance of the results are crucial, 

as they determine whether the results can contribute to theory and practice in the field of 

mathematics education. This underscores the significance of the research in advancing the field.   

A key aspect of DR is the development of theory elements transferrable to other contexts (Bakker, 

2018). Therefore, the design study should consider elements that are both descriptive and 

explanatory (Prediger, 2019), as well as elements that go beyond the specific context. From a DR 

perspective, this reflects the quality of the results and provides insight into the relevance of the 

design rrinciples beyond the specific context of IJ. 

The design principles have aspects that are transferable to task design for reasoning processes and 

other DGAE contexts, having both implied and potential generalizability. A finding that can be 

generalized towards task design for other reasoning processes is that the intrinsic properties should 

be known to students but in problems novel to students. This is relevant in reasoning contexts that 

concern the development of a student’s degree of coverage or radius of action. If technical level and 

introducing new concepts or properties is emphasized, one can consider using familiar problems to 

balance out unfamiliar concepts.  

The analytical tool for IJ and the definition of IJ can be generalized beyond the scope of the study. 

The relevance of the IJ tool, first and foremost, derives significance from contributing to KOM’s RC 

(Niss & Højgaard, 2019) in students’ use of the tool, especially by addressing a lesser researched area 

of justification. As argued across papers and in this kappa, the IAME concerns the use of artifacts in 

general but does not have notions that draw out the different processes, particularly for mathematics. 

Consequently, it has most often been applied to problem-solving. Hence, the analytical tools for IJ 

are a significant contribution to our understanding of the epistemic use of artifacts in reasoning 

processes. The analytical tool both brings a new perspective to a debated construct of techniques (see 

subsection 2.6.1) and suggests how the components of schemes (Vergnaud, 1998b, 2009) relate to 

the use of artifacts. Some of the findings that have emerged from the analysis bring new insights to 

IAME in general and not only in the context of justification. For example, paper 5 shows that 
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students’ personal experience of both the efficiency of rules-of-action and techniques advance their 

instrumental genesis. 

The relations between students’ scheme-technique duality and the three dimensions of RC are highly 

relevant for comprehending the role of DGAE in students’ justification processes. However, most of 

the findings related to RQ2 are confined to that context. Some of the suggested relationships may 

have relevance for other competencies. For instance, the technical level surpasses the techniques 

utilized and pertains to how students utilize the tool for epistemic mediation.  

The study focused on the productive side of RC within justification, and the analytical tool has been 

developed particularly within this context. Hence, its use within this context is warranted through 

the continued refinement and successful application in the study. To what extent can the IJ analytical 

tool be applied to the analytical aspect of the RC? This should be further explored, for example, in 

the context of students analyzing and critiquing other students’ arguments, including their tool use. 

There are some obvious concerns. Though the processes will also be aimed towards changing the 

status of the qualifier of a claim, what is the role of DGAE in such a situation? Does the DGAE only 

act as context, or are data being produced or reproduced? A fundamental relationship in the 

analytical tool is the production of data through techniques, and that relationship must be present 

in the situation for the tool to be relevant.  

A valid question to consider is: in what other situations can the analytical tool be useful? Its 

applicability beyond reasoning processes is uncertain, as it follows Toulmin’s (2003) argumentation 

model. However, it can be applied in other contexts that involve reasoning and utilize DGAEs to 

produce data for justifications and explanations. For instance, it can be used to provide activities 

where the axiomatic structure usually becomes clear in the final result, but processes leading to a 

proof can take on different forms. It is possible that the IJ analytical tool can also help in 

understanding the role of tools in such processes, indicating its potential usefulness in that context.  

Chapter 8 establishes and discusses theoretical links between the KOM’s RC and IAME. A few of 

these may be generalizable toward other aspects of the RC and different competencies. A link that 

has already been implied to be general in part 3 of the discussion is that the goal component of 

students’ schemes, in general, relates to students’ exercise of competency. Some links could be 

yielding insights for investigating other contexts of tool use. For example, I draw a link between the 

possibilities of inference (Vergnaud, 1998b) and the development of the operational invariants 

expressed in students’ warrants. Due to the theoretical perspective of justification, in an IJ context 

operational invariants play the role as warrants. This will differ if we consider operational invariants 

in the context of other competencies. For example, in the context of problem-handling competency, 

what are the role of operational invariants if they are not warrants? So in the context of other 
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competencies, can we find similar patterns of inference possibility that evolve students’ operational 

invariants?  

9.3 RESULTS AND ISSUES ACROSS THE STUDY 
First, the subsection 9.3.1 discus the assessment of RC in IJ processes, then 9.3.2 elaborate on how 

the study contributes to our understanding of the use of sliders in the algebra view. 

9.3.1 Assessing students’ exercise and progression of RC within IJ 

This section discusses how the study can contribute to assessing students’ exercise of RC, based on 

the collective results of the study.  

As discussed in discussion part 2 (see section 7.4), IJ takes a student-centered approach that 

embraces students’ reliance on empirical or phenomenological knowledge, and it advocates for an 

inclusive view of students’ use of tools as an exercise of RC. The aim of the study is not to evaluate or 

assess students’ RC but rather to understand the processes by which students form justifications in 

the context of a DGAE. However, there are elements that touch upon assessing students’ RC within 

the context of IJ. These are explored in this section. These elements also serve to consider the further 

progression of students’ RC. To assess students’ exercise of RC within the aspect of IJ, the assessor 

can consider: 

• Are the students’ instrumented actions aimed at changing the epistemic value of a claim? A 

basic application of RC involves using a DGAE for verification without explanation, as 

discussed in subsection 7.3.3. Verification can be effective and adequate in problem-solving 

contexts, but to determine if the verification falls within RC, it must be utilized to change the 

epistemic value of a claim. This can be challenging to ascertain, as the aim becomes clearer 

when students elaborate explanations for their justifications. 

• Are the students considering the intrinsic properties (Lithner, 2008) of the task in their 

justification? As discussed in paper 4, this is crucial for students’ progression toward 

theoretical justifications. The intrinsic properties serve as a foundation for students to 

connect their phenomenological impressions to algebraic expressions when using a 

DGAE. This also relates to students’ understanding of the properties. In paper 5 and section 

7.4, I discuss this in relation to discrete and continuous understandings of variables in 

dynamic behavior. How do the students understand these properties? Furthermore, are 

students aware of how these properties are expressed in the tool and how they may differ 

from mathematical theory? 

• What is the nature of students’ warrants? The ongoing discussion in papers 2 ‒ 5 and chapters 

6, 7 and 8 concerns whether students’ warrants are phenomenological or knowledge-based. 
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The latter is considered more advanced than the former, but a combination of both is also a 

possibility. 

• What is the nature of students’ final arguments? Paper 4 categorizes students’ arguments as 

phenomenological, numeric, geometric, and algebraic. The specific task at hand determines 

which types of arguments are desirable. 

• What form do students’ arguments take? While the sophistication of students’ arguments is 

related to technical dimensions in part 2 of the discussion, the study has not addressed the 

various forms of students’ arguments. However, in the context of DGAEs, the transition from 

generalizing upon a few examples to collective subsets becomes relevant. Additionally, the 

aspect of form becomes more important as students’ progress towards providing proof. 

While theoretical and knowledge-based justifications are often deemed desirable, it is important to 

recognize the value of phenomenological justifications and their educational significance.  

In the instances of phenomenological justification processes that I have observed, such as those of 

Isa and Em in paper 3, the phenomenological justifications related to intrinsic properties 

demonstrate students’ engagement with algebraic structure and their ability to apply and adapt their 

mathematical knowledge. This supports Olive et al. (2010), who argue that observing properties of 

invariance while manipulating the object has the potential to connect experimental and theoretical 

mathematics (p. 150). The more tangible experiences students have with algebraic expressions, the 

stronger their foundation is for further progress. Embracing these phenomenological experiences, 

which a DGAE can provide, as the basis for algebraic understanding may be an educational ideal for 

lower secondary school. 

9.3.2 Uses of the algebra view and sliders for RC 

Paper 1 describes the lack of literature about the use of the algebra view in GeoGebra together with 

sliders for lower secondary students. The paper concludes:   

Very little has been researched about which functionalities in GeoGebra’s Algebra 

View for working with variables as a general number, as well as how to use the 

functionalities in task design for activating lower secondary students’ mathematical 

reasoning competency. Still, the review does indicate that using the slider for explicit 

variables can be used for this aim, and typing in expressions containing variables 

should be further explored in the context of GeoGebra. (p.61) 

While the potential for connecting symbolic representations to graphic representations is 

mentioned, this potential is unexplored within MER. The study advances the research within this 

area, i.e. students’ use of DGAE. The main critique of the algebra view is its complex representational 
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systems. This suggests the need for low-complexity task design, allowing students to capitalize on 

the potential. This need can to some extent be met by using explicit rather than implicit variables 

when students are asked to transform and construct objects through algebraic expressions. The 

microworld of variable points (see section 6.2) is a contribution to understanding how the low-

complexity of task design can be realized. Indeed, the microworld of variable points offers novel 

representations of algebraic properties. By constructing points and dragging sliders, students can 

access various phenomenological experiences of the structural properties of algebraic expressions. 

Additive structures can be experienced as positions of sets or trajectories in the coordinate system. 

Multiplicative relationships can be experienced as differences in the length of the sets, or as the speed 

points move with, using the animation feature. It also provides phenomenological experiences of 

intrinsic properties related to algebra and the variable as a generalized number, such as limits, 

infinity, and equality.  

The slider plays a crucial role in both pragmatic and epistemic mediation in IJ. Students’ utilization 

of it can be categorized into production of data for either verification or justification. Students’ RC 

can be linked to the sophistication of their justifications in relation to a technique, rather than the 

complexity of the technique itself. This underscores the significance of using the slider tool for data 

generation and interpretation, as a significant tool in the algebraic view for reasoning processes. 

Through the DR study, the results stemming from the design provide insight on how the use of the 

slider links graphic representation and symbols, by providing access to phenomenological 

experiences of algebra concepts and structures. In the context of RC, ideally, it is such a link that 

students attempt to justify. However, for students to progress from phenomenological justification 

to knowledge-based justification, support and encouragement through task design and teacher 

guidance are necessary. In addition, as discussion parts 1 and 2 argue, phenomenological 

experiences depend on students’ utilization of the graphic view, capitalizing on the potential for 

linking it to the algebra view.  

9.4 IMPLICATIONS FOR PRACTICE 
Some of the results have particular implications for practice, which I would like to emphasize here.  

The potentials, and in particular potential uses, of technology are an ongoing debate. However, there 

is some common ground for considering the epistemic uses valuable. What this study brings to this 

discussion is that epistemic use of digital tools in reasoning processes involve capitalizing on 

students’ phenomenological experiences as a foundation for mathematical reasoning in justification. 

Some design results are relevant for implementation, both in the form they take in this kappa and in 

the papers, but also as inspiration for uses of GeoGebra in practitioners own design processes. In 
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this context, it is an advantage that the microworld exists within a piece of software that is already 

known and accessible to students and teachers, at least in Denmark.  

By providing a new representational structure, the microworld of variable points can be applied by 

practitioners for teaching and learning algebraic concepts, both as a microworld for RC as well as 

other competencies and age groups. This study is directly relevant to lower secondary school and 

basic algebraic concepts and properties. However, more complex algebraic relationships, such as 

exponential and quadratic relationships, can also be explored in the microworld.   

The predictions tasks are an example of the task structure “Justified Prediction-Observation-

Explanation tasks” (see subsection 6.1.1) with particular importance for practice. It can involve 

students of all ages and in different institutions when using a DGAE tool - also beyond the RC. The 

“Justified Prediction-Observation-Explanation” tasks have already proved valuable in reasoning 

processes using DGEs (Højsted, 2021). This study adds to that knowledge by supplying details of 

how such a task can capitalize on the different phases, for example, to predict within the environment 

by drawing, tracing, or dragging free objects. It has also been shown that comparison of other objects 

in the prediction can assist students in justifying differences in the objects. Hence, the study provides 

examples of how predictions are valuable in students’ exercise of RC.  

The three-part discussions and this concluding discussion have collectively laid the foundation for 

the subsequent project conclusion. The final section emphasizes the project’s contributions to the 

overarching goal and the research inquiries. 
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9.5 CONCLUSION 
This dissertation has explored the potential of using a DGAE, which integrates algebraic and graphic 

features, for students in lower secondary school (aged 13‒16) to exercise their RC in justification 

processes. Additionally, these investigations have contributed to theoretical development by linking 

RC in the KOM framework with the use of DGAE to theories in MER. 

Together with the kappa, I have reported on the study in six individual, yet related, papers, which 

have contributed to addressing the three research questions through theoretical and empirical 

contributions.  

The research questions have been addressed with the iterative processes of DR, including a 

networking perspective. Networking has played a dual role as a platform for reflecting on the 

theoretical decisions in the project, as well as linking the KOM to other theories in MER. Though the 

results of the kappa may seem segregated between theoretical and empirical, I will, once again, stress 

that both empirical and theoretical results are obtained through the iterative processes of DR, as 

explained and illustrated in chapter 4.   

The study has addressed how tasks can be designed to encourage lower secondary students to 

exercise their RC, particularly in the context of justifications that focus on variables as general 

numbers (RQ1). The main results establish three design principles. The first principle deals with the 

balance between unknown problems and students’ knowledge of concepts in reasoning contexts. The 

second principle focuses on the complex representational structures of DGAE. The third principle 

suggests a prediction task structure for promoting reasoning processes. These design principles have 

been applied to and refined through the construction and development of tasks that encourage 

students’ exercise of RC using a DGAE in a microworld of variable points. 

Furthermore, the study has examined the relationships between students’ scheme-technique duality 

(Drijvers et al., 2013) and their exercise of RC when solving these specifically designed tasks 

(RQ2).  The examination has included an analytical tool for IJ, presented in the appurtenant papers 

(2,3 and 5). The results describe RC in relation to the use of DGAE in three dimensions: degree of 

coverage, radius of action, and technical level  

Finally, the study has established theoretical links between RC and the IAME, drawing on the 

theoretical developments of the study (RQ3), that is, in particular, the analytical tool for IJ. This has 

involved integrating insights from the research to contribute to a deeper understanding of how RC 

and IAME can be linked. This theoretical perspective of the study has helped elaborate on RC and 

the scheme-technique duality in a form of mutual fertilization (Niss & Jankvist, 2022), and it 

provides the potential for the networking strategy of coordinating (Prediger et al., 2008). The later 
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stages of the study focused on Vergnaud’s (1998b) notion of scheme, which served to elaborate on 

conceptual aspects of linking IAME to the RC in the KOM framework. 

What are the potentials of using DGAEs to help students (aged 13‒16) exercise their RC in 

justification? The use of DGAEs not only serves as an entry point for students to explore fundamental 

algebraic structures and concepts, but also as a vital tool in the process. The study underscores the 

need for several support measures from the side of both task design and teachers. However, if these 

measures are carefully thought out and implemented, the link between algebraic symbolism and 

dynamic graphic representation, through the use of sliders, can provide phenomenological 

experiences of algebraic concepts and structures, allowing students to engage in reasoning about 

other abstract concepts. 
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APPENDIX 

List of appendices: 

A: Iteration 2 task sequences 

B: Iteration 3 task sequence  

C: Abbreviations 
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A: Iteration 2 task sequences 

The fully online task sequence implemented in class A 

https://www.geogebra.org/m/pbrvygs5 (In Danish) 

Word document with tasks sequence + online GeoGebra apps English 

Frist and introductory problem set 

 
Q1 

Read and do:  

Points are constructed by defining their x and y coordinate. Points are always named with a capital letter. 

Try it yourself, enter the following: A = (1,2) 

Q2 

a) Turn on "show trace" by right-clicking on point A. 

b) Investigate how you can change the coordinates by dragging the point. 

c) Also change point A by entering different values for its x and y coordinates in the algebra view. 

d) Change the coordinates by writing mathematical expressions instead of numbers on the x- and y-coordinates. Challenging yourself 

to see how complicated a math expression you can come up with? 

 

Q3 

a) Create three points that lie on a straight line parallel to the x-axis. 

b) Argue why your points lie on a line that is parallel to the x-axis. 

Answer guide: 

You must argue that something is parallel. Therefore, you must consider what is needed for something to be parallel, write what you 

find as the first thing in your argument. 

Initial state 
Q1+2a+b 

Q2d 
Q3a+d 

https://www.geogebra.org/m/pbrvygs5


294 
 

• Write something about your points and the line they lie on 

• Write something about the x-axis 

• Write why this means they are parallel 

d) Bonus GeoGebra challenge: Can you construct the line on which the points lie by typing in the algebra window? 

Q4 

a) Discuss what you can predict about the following points without writing them into GeoGebra. 

 

R= (3,4), U= (3;1,6) and T=(3,-2) 

 

b) Formulate a hypothesis  

Answer guide: 

A good hypothesis is a claim that something must be true that is not written right before us. The claim that "the x-coordinate of point 

U is 3" is not a good hypothesis, because it is stated in the assignment. What can you say about the points that you have not already 

been told? 

A hypothesis can start with 

We claim that… 

It must apply to… 

Points R, U and T must… 

c) Argue why your hypothesis must be correct. 

 

Answer guide: 

What is the mathematical content of your hypothesis that must apply for the hypothesis to be true? Start by writing it. 

Then write what you know about the points. 

Are there other elements from your hypothesis that you should write about? 

Write why this means that the hypothesis is true 

Q5 

a) Test your hypothesis by entering the coordinate sets for points R, U and T into GeoGebra. 

b) Is your hypothesis correct? 

If yes, how do you know if your hypothesis is correct? 

If no, what did you get wrong in the argument and what did you learn? 

 

Second problem set with one dimensional variable points 

  
Q1  

Read: 

Initial state Q2 
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Points can have a variable in the coordinate set as these two points: 

A = (1,s) and B = (s,1) where s is a variable. 

Q2 

Show and explain how you think points A and B move in the coordinate system when s changes value? 

(to do so, you can use the tools in the toolbar, and you can also right-click and use the tools there) 

Q3  

Justify your hypothesis - why do A and B move as you claim? 

 

Answer guide: 

In question 2 you have shown how you think A and B move. 

You must argue why the points move exactly like that. 

• Write what you know about the coordinates of the points 

• Write why this means that they must move exactly as you say 

 

Q4  

Construct the points A = (1,s) and B = (s,1). It is important that you write s in the coordinate sets. 

Q5 

a) Change the value of s by dragging the slider. 

b) Turn on "show trace" for the points (right click on the points) 

c) Change the value of s again by dragging the slider. 

d) Explain to the camera how the points move 

e) Also explain why they move like that 

 

Q6 

a) Formulate a hypothesis about a relationship between the variable s and point A 

Answer guide: 

When a hypothesis is to be about a relationship, it must describe how something affects something else. In this case, it is what happens 

to A when s changes. Feel free to use GeoGebra. 

You can, for example, start your hypothesis with: 

When s... 

If s… 

It must apply to A that…. when s…. 

 

b) Argue why your hypothesis is true 

Answer guide: 

What is the mathematical content of your hypothesis that must apply for the hypothesis to be true? Start by writing it. 

Then write what you know about the points. 

Maybe you should write something about variables? 

Q4+5a-c 
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Or something about the coordinate system? 

Write why the things you have mentioned mean that the hypothesis is true. 

 

Q7   

c) When does A = B?  

d) What arguments can you come up with to justify when A = B?  

Answer guide: 

For the answer you must see how many different arguments you can come up with, which justify that your answer in 7a) is correct. 

Consider: 

• What do you know about the points? 

• What do you know about the variable s? 

• What can you see? 

• Why are the points not the same elsewhere?  

 

Q8 

a) Construct a new point C depending on s, which moves parallel to A. (so, s must be in the coordinate set of the new point) 

b) Can C = A, if so, when? Can C = B, if so, when? 

c) Justify your answer 

Answer guide: 

You must argue why the points are equal or not. Therefore, you must consider what it takes for them to be equal. Write what you find 

out as the first point in your argument. 

• Write something about point B 

• Write something about Point C 

• Write why this means that your answer must be correct 

 

If you find that C cannot be equal to B, try to see if you can change C so that they can. Maybe that can support your argument? 

 

  

Q8a 
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Problem set with two dimensional variable points. 

 

Q1 

D = (s,s) and s is a variable. 

Show in the coordinate system how point D moves when s changes value (You can use the tools in the toolbar and you can also right-

click) 

 

Q2 

Justify your hypothesis - why does point D move as you claim?  

Answer guide: 

In question 1 you have shown how you think D moves. 

You must argue why D moves exactly like that. 

• Write what you know about D 

Write why this means that D moves exactly as you say 

 

 

 

Q3 

a) Type D = (s,s) into the GeoGebra app 

b) Change the value of s by dragging the slider 

c) Does the point move as you expected? 

d) Describe here how the point moves 

e) Justify why D moves exactly like that 

Answer guide: 

Consider your answer for question 2. Can you still use the argument after you have seen the point move in GeoGebra? 

• If yes, copy it down here. Is there anything that needs to be added or changed? 

• If no, formulate a new argument. 

Q3a

  

Q1

  

Initial state 
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Q4 

a) Construct a new point I that depends on s and that moves from the 2nd quadrant to the 4th quadrant. (So, you must construct a new 

point that has s in its coordinate set) 

b) Why is your solution correct? 

 

Answer guide:  

Your argument must contain the following points: 

• What is needed for a point to move from the 2nd quadrant to the 4th quadrant 

• What is the coordinate set for I ? 

• Why does it mean that you are moving from the 2nd quadrant to the 4th quadrant 

 

Q5 

a) Construct a point P dependent on s that never crosses D’s path. 

b) What arguments can you find that justify that your point never crosses D’s path? 

Answer guide: 

Your argument must consider the following points: 

• What does it take for P to never cross D’s path? 

• What is the coordinate set for P? 

• Why does this mean that P never crosses D’s path? 

 

Q4a

  
Q5a 
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Word document with tasks sequence + online GeoGebra apps Danish 

 

 byder at du skal svare i GeoGebra 

Opgave 1:  

Sp1) 

Læs og udfør:  

Punkter konstrueres ved at definere deres x- og y-koordinat. Punkter benævnes altid med et stort 

bogstav.  

 Prøv selv, indtast følgende: A = (1,2) 

Sp2)  

a) Slå "vis spor" til, ved at højre klikke på punkt A. 

b) Undersøg hvordan I kan ændre koordinaterne ved at trække i punktet.  

c) Ændr også på punkt A ved at skrive andre værdier for dens x- og y-koordinaterne i algebravinduet.  
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d) Ændr koordinaterne ved at skrive regneudtryk (regnestykker) i stedet for tal på x- og y-

koordinaterne. Udfordrer jer selv, hvor kompliceret et regneudtryk kan I finde på? 

 

Sp3) 

a) Opret tre punkter som ligger på en ret linje parallel med x-aksen.  

b) Argumenter for, at jeres punkter ligger på en linje der er parallel med x-aksen.  

 

Jeres svar: 

 

 

 

 

 

 

Svar guide: 

I skal argumentere for at noget er parallelt. Derfor 

skal I overveje, hvad skal der til for at noget er 

parallelt, skriv hvad I finder ud af som det 

første i jeres argument.  

• Skriv  noget om jeres punkter og den linje 

den danner 

• Skriv noget om x- aksen 

• Skriv hvorfor det betyder at de er parallelle 

 

 

c) Argumenter for at jeres punkter ligger på en horisontal linje. 

Svar: 

 

Svar guide. 

I skal argumentere for at noget er horisontalt. 

Derfor skal I overveje, hvad skal der til for at noget 

er horisontalt i et koordinatsystem. skriv hvad I 

finder ud af som det første I jeres argument.  

Skriv noget om jeres punkter og den linje den 

danner 

Skriv hvorfor det betyder at den er horisontal 

 

d)  Bonus GeoGebra udfordring:  Kan I konstruere den linje som punkterne ligger på ved at 

skrive i algebra vinduet? 
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Sp4)  

a) Diskuter hvad I kan forudsige om følgende punkter uden af skrive dem ind i GeoGebra.  

R=(3,4) , U= (3;1,6) og T=(3,-2)  

b) Skriv en hypotese her under  

Jeres svar: 

 

Svar guide: 

En god hypotese er en påstand om at noget må 

være sandt, som ikke står skrevet lige foran os.  

Påstanden at  ”x-koordinaten i punkt U er 3” er 

ikke en god hypotese, for det står jo i opgaven. 

Hvad kan I sige om punkterne, som I ikke allerede 

har fået at vide? 

 

En hypotese kan starte med 

Vi påstår at… 

Det må gælde at… 

Punkterne R, U og T må…  

 

c) Argumenter for at jeres hypotese må være rigtig. 

Jeres svar: 

 

Svar guide: 

Hvad er det matematiske i jeres hypotese, som skal 

gælde for at hypotesen må være sand? Start med 

skrive det. 

 

Skriv så hvad I ved om punkterne  

Er der andre elementer fra jeres hypotese I skal 

skrive om? 

Skriv hvorfor det betyder at hypotesen er sand 

 

Sp5) 

a)  Test jeres hypotese ved at skrive koordinatsættene for punkt R, U og T ind i GeoGebra. 
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b)  Er jeres hypotese rigtig? 

 Hvis ja, gå til spørgsmål c) 

 Hvis nej, gå til spørgsmål d) 

Opgave 2:  

Sp 1) Læs: 

Punkter kan have en variabel i koordinatsættet som disse to punkter 

A = (1,s) og B = (s,1) hvor s er en variabel. 

 

Sp 2)  Vis I koordinatsystemet, hvordan I tror punkt A og B bevæger sig, når s ændrer værdi?  

Forklar det også til jeres webcam 

(I kan fx bruge værktøjerne i værktøjslinjen og I kan også højre-klikke og bruge de værktøjer der er 

der) 

 

Sp 3) Begrund jeres hypotese - hvorfor bevæger A og B sig som I påstår?  

Jeres svar: 

 

Svar guide: 

I spørgsmål 2 har I vist hvordan I tænker A og B 

bevæger sig. 

I skal argumentere for hvorfor punkterne bevæger 

sig lige præcis sådan.  

 

• Skriv hvad I ved om punkternes koordinater  

• Skriv hvorfor det betyder, at de må bevæge 

sig netop som I siger  

 

Sp 4)   

a) Gå til det næste GeoGebra ark i opgave 2 . 
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b) Konstruer punkterne A = (1,s) og B = (s,1). Det er vigtigt at I skriver s i koordinatsættene. 

 

Sp5)  

a) Ændre på værdien af s, ved at trække i skyderen. 

b) Slå "vis spor" til for punkterne ( højre klik på punkterne)  

c) Ændre igen på værdien af s, ved at trække i skyderen. 

d) Forklar til kameraet hvordan punkterne bevæger sig  

e) Forklar også hvorfor de bevæger sig sådan 

Sp 6)  

a) Opstil en hypotese om en sammenhæng mellem variablen s og punkt A   

Jeres svar: 

 

Svar guide: 

Når en hypotese skal handle om en sammenhæng, 

så skal den beskrive hvordan noget påvirker noget 

andet. I denne opgave er det hvad der sker med A 

når s ændre sig. Brug gerne GeoGebra  

I kan fx starte jeres hypotese med: 

 

Når s ...  

Hvis s … 

Det må gælde for A at…. når s…. 

 

b) Argumenter for at jeres hypotese er sand 

Jeres svar: 

 

Svar guide: 

Hvad er det matematiske i jeres hypotese, som skal 

gælde for at hypotesen må være sand? Start med 

skrive det. 

 

Skriv så hvad I ved om punkterne  

Måske I skal skrive noget om variable? 
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Eller noget om koordinatsystemet? 

 

Skriv hvorfor de ting I har nævnt betyder at 

hypotesen er sand.  

  

 

Sp7)  

a) Hvornår er A = B?  

Jeres svar: 

 

Svar guide: 

Undersøg hvornår de to punkter er det samme. 

Skriv kort hvornår A og B er ens. 

 

b) Hvilke argumenter kan I finde for at begrunde hvornår A = B? Noter de argumenter I finder frem 

til. 

Svar: 

 

Svar guide: 

Her skal I se hvor mange forskellige argumenter I 

kan finde frem til, som begrunder at jeres svar i 7a) 

er korrekt.  

Overvej: 

Hvad ved I om punkterne 

Hvad ved I om den variable s 

Hvad kan I se 

Hvorfor er punkterne ikke ens andre steder? 

 

Brug jeres viden til at forme argumenter. 
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Sp 8)  

a)  Konstruer et nyt punkt C afhængig af s, som bevæger sig parallelt med A.  ( s skal altså 
indgå i koordinatsættet i det nye punkt) 

b) Kan C = A , hvis ja, hvornår?  Kan C = B, hvis ja hvornår?  

Jeres Svar: 

C = A : 

C = B :  

 

c) Argumenter for jeres svar  

Jeres svar: 

 

C = A :   

 

 

 

C = B :  

 

 

 

 

Svar guide: 

I skal argumenter for punkternes lighed eller 

mangel på samme. Derfor skal I overveje, hvad der 

skal til for at noget er lig med hinanden. Skriv 

hvad I finder ud af som det første i jeres 

argument.  

• Skriv noget om punkt B  

• Skriv  noget om Punkt C  

• Skriv hvorfor det betyder at jeres svar må 

være korrekt 

 

Hvis I finder at C ikke kan være lig med B, forsøg 

om I kan ændre på C, så de kan. Måske det kan 

understøtte jeres argument? 
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Opgave 3:  

 Find opgave 3 i gruppen.  

 

Sp1)  

D = (s,s) og s er en variabel.  

Vis I koordinatsystem hvordan punkt D bevæger sig, når s ændre værdi? (I kan bruge værktøjerne i 

værktøjslinjen og I kan også højreklikke) 

 

Sp2) Begrund jeres hypotese - hvorfor bevæger punkt D sig som I påstår? 

Jeres svar: 

 

Svar guide: 

I spørgsmål 1 har I vist hvordan I tænker D bevæger 

sig. 

I skal argumentere for hvorfor D bevæger sig lige 

præcis sådan.  

• Skriv hvad I ved om D 

Skriv hvorfor det betyder, at de må bevæge sig 

netop som I siger 

 

Sp 3)  

a) Skriv D = (s,s) ind i GeoGebra arket ( det nederste ark) 

b) Ændr på værdien af s, ved at trække i skyderen  

c) Opfører punktet sig som I regnede med?  

Svar: 

d) Beskriv her hvordan punktet bevæger sig:   
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Svar: 

 

e)  Argumenter for hvorfor D bevæger sig netop sådan 

Svar: 

 

Svar guide: 

Se på jeres svar til spørgsmål 2. Kan I forsat bruge 

argumentet efter I har set punktet I GeoGebra?  

• Hvis ja så kopier det her ned. Er der noget 

der skal tilføjes eller ændres? 

• Hvis nej, så formuler et nyt argument.  

Sp4)  

a)  Konstruer et nyt punkt I afhængig af s, som bevæger sig fra 2. kvadrant til 4. kvadrant. ( 
I skal altså konstruer et nyt punkt som har s i sit koordinatsæt) 

b) Hvorfor er jeres løsning korrekt? 

Svar: 

 

Svar guide: 

Jeres argument skal indeholde følgende punkter: 

• Hvad skal der til for at et punkt bevæger sig 

fra 2. kvadrant til 4.kvadrant 

• Hvad er koordinatsættet for I ? 

• Hvorfor betyder det at I bevæger sig fra 2. 

kvadrant til 4.kvadrant  

Sp5)  

a)  Konstruer et punkt P afhængig af s som aldrig krydser D’s bane. 

b) Hvilke argumenter kan I finde der begrunder at jeres punkt aldrig krydser D’s bane? 
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Svar: 

 

Svar guide: 

Jeres argument skal indeholde følgende punkter: 

• Hvad skal der til for at P aldrig krydser D’s 

bane 

• Hvad er koordinatsættet for P ? 

• Hvorfor betyder det at P aldrig krydser D’s 

bane 

 

Sp 6)  

a)  Konstruer et punkt Z afhængig af s som bevæger sig imellem punkt D og P 

b) Hvorfor er jeres løsning korrekt? 

Svar: 

 

Svar guide: 

I har formuleret mange argumenter nu, så her kan 

I prøve selv. Er I, i tvivl så se tilbage i opgaverne, 

måske I kan finde hjælp i jeres tidligere svar.  

 

B: Iteration 3 task sequence 

Frist and introductory problem set  
 

Open this link to a GeoGebra sheet:  

https://www.geogebra.org/classic/bps4j3bn 

 

a) Examine by pulling the slider for s:  
 
b) Describe to each other what you see and notice. Try to explain what you see. 
 

 

https://www.geogebra.org/classic/bps4j3bn
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c) Turn on the trace for all the points (by right click on the point).  
Start the animation on the little arrow.   

d) Describe what you are now noticing. Try to explain what you see. 
 

e) Why is it that when you change s, the points move? And why do they move differently?  
f) One can enter precise values for the variable by clicking s = .  (First stop the animation) 
g) Enter different values for s and examine the outcome. Describe and explain. 

 
h) Notice the algebra view on the left side. Describe what information you can see there. 
i) Each point has two lines of information. Select a point in the algebra view. Describe and explain 

what the difference is between the two lines? Also examine what happens when you change s. 
 

 
 

 

 

j) Create a point, P = (3,s).   
• Change P by changing 3 to other values. It can be all kinds of numbers, both natural numbers, decimals, fractions, with 

exponents - whatever you can come up with.  Try several different ones. Remember that in GeoGebra decimals are written 
with periods and not comma, e.g. 1.2.  

• Change P by adding arithmetic operations to s.  So, +, -, *, /.  e.g.,  P = (3, 0.5s) 
• Try combining several operations (e.g., multiplication and minus) e.g., P = (3, 2s-1) 
 

k) Examine, describe, and explain the significance of subtracting/adding to s: 
Write your answer here:____________________________________ 
 
l) Examine, describe, and explain the impact of multiplying or dividing s by a number. 
Write your answer here: ________________________________ 
 
m) What happens when you combine several types of operations? 
Write your answer here: ________________________________ 
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Second problem set with one dimensional variable points 

 
Q1 

a) Open a new GGB   
b) For this question you can use the pen tool, add points, lines and the trace function.  

Guess how A1= (1,s) behaves in the coordinate system when changing the value of s.    
c) Also show where the track starts and ends. 
d) Explain your guess. 
e) Now construct the point using the algebra view: A1= (1,s) and examine what happens when you change the 

value of s. 
f) Does it match what you thought? Completely, partially, or not at all?" Explain why 
When done: If you have drawn, added points or the like, delete all that so that only point A1 remains. 

 

 

Q2 
m) For this question you can use the pen tool, add points, and the trace function.  
Guess and show how  A2 = (1,s - 1)  behaves in the coordinate system when changing the value of s.   
n) Also show where the track will start and end. 
o) Explain your guess. 
 
p) Explain to each other how A2 is different from point A1. 

 

q) Now construct point: A2 = (1,s-1) and examine what happens when you change the value of s. 
r) Does it match what you thought? Completely, partially or not at all?" Explain why. 

When done: If you have drawn, added points or the like, delete all that so that only points A1 and A2 remain. 
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Q3 
a) For this question you can use the pen tool, add points, and the trace function.  

Guess how B = (v,1) behaves in the coordinate system when changing the value of v.     
 
i) Explain your guess. 
j) Explain to each other how is B different from points A1 and A2?  Does B have any similarities with A1 or A2? 
 
k) Now construct point B= (v,1) and examine what happens when you change the value of v. 
l) Does it match what you thought? Completely, partially or not at all? Explain why. 
 
m) What is the value of v and s when: 

 
a. B=A1?    v=____ s=______ 
b. B=A2?    v=____ s=______ 

 
n) Will it also apply if B = (s,1)? Explain why/why not. 
o) Change the point  B = (v,1) to B = (s,1)  
p) Does it match what you thought? Completely, partially or not at all? Explain why. 
 
q) Can A1=B? Please mark your answer and explain why/why not. 

 

a. Yes when: _______________________________________________ 
b. No.  

 
r) Can A2=B? Please mark your answer and explain why/why not. 
 

a. Yes when: _______________________________________________ 
b. No.  

 
 

s) If you change A2 ‘s x-coordinate. Is it then possible for A2=B? 
 

a. Yes when: ________________________________________________                                                             
Explain why your solution applies. 

b. No. Explain why. 
   

t) Change A2 back to A2 = (1,s - 1). 
u) Now, if you change A2’s y- coordinate, can A2=B without A2=A1?   

Q3a Q3c 

Q3k Q3m 
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a. Yes when: ________________________________________________                                       

Explain why your solution applies. 
b. No. Explain why not. 

 

 

Q4 
a) Show and explain: How can you see in the coordinate system that two points: 

• are equal to each other in one point.  
• always equal each other 
• are never equal to each other. 

 
b) Construct a new point A3 dependent on s with the following properties (you must construct a new point that has s in its coordinate 

set):    
• where x=1  
• which never equals A1 and A2 
• A3 = B in a point 

c) Check that your solution meets all three requirements. 
d) Explain why your solution applies. 
e) Can you formulate a rule for when any point on x=1 will be equal B when s = 1? 

 
Answer:________________________________________________________________________ 
 

Q5 
 
This task is a thought experiment.  
a) In theory, how long can the tracks of a point be? Is there any limitation? Explain why/why not. 
b) Now if we imagine that there is such a track on the line x=1. Which of these points are on that track? (Mark which points) 

 
(1,s)      (3,s)     (1, 4s-100)     (2,4s+100)     (1, 1/2s)     (s3,1)   (s/s, 4)       (s/s, s·s)     (s/s, ss) 

 
c) Formulate a rule for which points are on the track? Explain why your rule applies. 
 
Answer:_________________________________________________________________________ 
 

 

 

 

 

Q6 
a) Construct a new point C depending on s that moves parallel to A1 and A2.  
b) Can C=B? If so, when? If not, is it possible to change C so C =B? 
c) Explain why 

Q4b 

Q6ab 
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Second problem set with two dimensional variable points 

 
Q1 

Open a new GGB 
a) For this question you can use the pen tool, add points, and the trace function.  

Guess how D = (s,s) behaves in the coordinate system when changing the value of s.     
b) Also show where the track starts and ends. 
c) Explain your guess. 

 

d) Now construct the point: D= (s,s) and examine what happens when you change the value of s. 
e) Does it match what you thought? Completely, partially or not at all? Explain why 

 

f) Construct a new point I dependent on s, which moves from the 2nd quadrant to the 4th quadrant. Why is your solution correct? 
g) Can D = I, if so, when? Please mark your answer and explain it. 

 

• Yes when:________________________________________________ 

• No. 
 

 

Q1ab Q1d 

Q1f 

Q2a 
Q2d 
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Q2 
 
a) Construct a point P depending on s which never intersects D’s trajectory.  
b) Explain why your point P does not intersect D. 
c) Can P = I? If so, when? Please tick your answers. Explain why/why not to each other. 

 
a. Yes when:___ 
b. No  

 
d) If you now change the coordinates of P, is it possible that P = I? If so, when 
e) Explain why your solution 

Q3 
 

Open the same file from earlier in GeoGebra. https://www.geogebra.org/classic/bps4j3bn 

Examine it again, is there anything new you notice or something you can better explain now? 

 

 

  

https://www.geogebra.org/classic/bps4j3bn
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C: Abbreviations 

RC – Reasoning Competency 

IAME – Instrumental approach to mathematics education 

IA – The instrumental approach, also known as the theory of instrumental genesis 

IJ – Instrumented justification 

DR – Design based research  

DGE – Dynamic Geometry environments  

DGAE – Dynamic geometry and algebra environments 

CAS – Computer algebra system 

KOM – The KOM-framework: Competencies and Mathematical Learning  

NT – Networking of theories  

ATD - Anthropological theory of didactics  
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